近年来,用于采矿业 3D 地形测绘的轻型无人机 (UAV) 得到了显著发展。特别是在露天矿等复杂地形中,海拔起伏剧烈,与传统方法相比,基于无人机的测绘已证明具有经济性和更高的安全性。然而,无人机测绘复杂地形的最重要因素之一是飞行高度,由于生成的 DEM 的安全性和准确性,需要认真考虑飞行高度。本文旨在评估飞行高度对露天矿生成的 DEM 准确性的影响。为此,研究区域选在越南北部一个地形复杂的采石场。调查采用 50 m、100 m、150 m、200 m 和 250 m 五个飞行高度进行。为了评估生成的 DEM 的精度,使用了 10 个地面控制点 (GCP) 和 385 个检查点,这些检查点通过 GNSS/RTK 和全站仪方法进行了测量。通过 X、Y、Z、XY 和 XYZ 分量的均方根误差 (RMSE) 来评估 DEM 的精度。结果表明,在飞行高度小于 150 m 时生成的 DEM 模型具有较高的精度。当飞行高度从 50 m 增加到 250 m 时,10 个 GCP 的垂直 (Z) 方向的 RMSE 从 1.8 cm 增加到 6.2 cm,水平 (XY) 方向的 RMSE 从 2.6 cm 增加到 6.3 cm,而 385 个检查点的垂直 (Z) 方向的 RMSE 从 0.05 m 逐渐增加到 0.15 m。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
传感器是控制回路不可或缺的一部分,可以调节制造过程和监控产品。它们需要精确地按照规格执行,并在预期的使用寿命内可靠地运行。随着工作温度的升高,主要挑战包括设备性能下降、测量不精确、长期漂移和滞后。为了满足日益增长的工业高温需求,这项工作涉及开发 200 ◦ C 基准的涡流传感器。传感器系统应该在单个载体中实现,包括传感器和相关电路。这项工作报告了系统的概念设计、合适组件的研究、适当的组装和连接技术以及测试系统的制造和相关测试。为了简洁起见,本文集中介绍系统的概述和主要功能,而不是介绍开发过程的概念细节。由于仅文献调查就包括一百多个来源,因此详细信息将在项目报告中介绍,并将在最终论文中总结。此外,还提出了预测 200 ◦ C 时传感器行为的特定模拟模型。将测试系统的测量结果与模拟结果进行比较,以便通过迭代改进创建微型原型。
结合我们经过实地验证的 VME 主机技术与最近开发的 VME 子系统技术,我们能够推出一种更高效、更全面、更经济的方法来升级常用的仪表级雷达系统。VME 升级将现有硬件替换为新的最先进的基于 VME 的计算机、磁盘驱动器、串行接口、操作员通信计算机 (OPCOM) 和特定的 VME 接口卡,以模拟现有的总线控制器。从主机 VME 计算机升级开始,BAE Systems 提供了一个扩展基础平台,以满足长期需求。利用商用现货 (COTS) 板和“C”语言,可以轻松维护和升级新计算机系统。这条新产品线专为 RIR 系列基于计算机的仪表雷达系统的电子子系统升级而量身定制。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
