Zimnyakov, D., Alonova, M., “结合偏振测量和光谱偏振测量技术诊断生物组织中的癌症变化”,Proc. SPIE 9258,光电子学、微电子学和纳米技术高级主题 VII,92580K doi: 10.1117/12.2068182(2015 年 2 月 20 日);11. OP Peresunko;Ju. G. Karpenko;DN Burkovets;PV Ivashko;AV Nikorych;SB Yermolenko;I.
型号152-1电阻仪采用了一种测量技术,该技术符合ANSI/ESD关联标准,用于测量表面电阻,电阻率和音量电阻,并具有出色的测量准确性,并且使用点对点探针或两点探测器的测量范围为10至10欧姆。测得的电阻值清楚地显示在高对比度LCD显示屏上。有各种探针可用,配件选项包括步行测试适配器
本卷中的论文是封面和标题页上引用的技术会议的一部分。论文经过编辑和会议计划委员会的筛选和审查。一些会议演讲可能无法发表。其他论文和演讲录音可在 SPIE 数字图书馆 SPIEDigitalLibrary.org 上在线获取。这些论文反映了作者的工作和思想,并按提交时的形式在此发布。出版商对信息的有效性或因依赖该信息而导致的任何结果概不负责。请使用以下格式引用这些会议记录中的材料:作者,“论文标题”,载于《生物学和生物光子学中的量子效应和测量技术》,由 Clarice Aiello、Sergey V. Polyakov、Paige Derr 编辑,SPIE 12863 的 Proc.,七位文章 CID 编号 (DD/MM/YYYY);(DOI URL)。 ISSN:1605-7422 ISSN:2410-9045(电子版) ISBN:9781510669857 ISBN:9781510669864(电子版) 由 SPIE 出版 PO Box 10, Bellingham, Washington 98227-0010 USA 电话 +1 360 676 3290(太平洋时间) SPIE.org 版权所有 © 2024 美国光学仪器工程师协会 (SPIE)。 SPIE 允许在支付费用后将本书中的材料复制用于内部或个人用途,或用于特定客户的内部或个人用途,但美国版权法授予的合理使用条款除外。 要获得使用和分享本卷中文章的许可,请访问 copyright.com 的版权许可中心。 除非获得出版商的书面许可,否则禁止以再版、转售、广告或促销为目的,或以任何形式系统或多次复制本书中的任何材料。由 Curran Associates, Inc. 在美国印刷,获得 SPIE 许可。
数据来源:此表格要求根据与激光光束特性相关的数据进行计算。支持者可以通过直接测量、制造商规范或专业仪器获取数据。支持者还可以通过做出合理、保守的假设来获取数据,例如,某个值会使光束比实际更危险。所有数据都应偏向安全。在数据准确性对合规性至关重要的临界情况下,请提供有关测量技术、数据来源和假设的其他信息。
供应商与用户之间在界面上的这些分歧表明,需要对适用的测量技术进行标准化。美国材料与试验协会 (ASTM) 电子委员会 F-1 满足了这一需求。1955 年,该委员会从真空管应用有色金属小组委员会发展成为 ASTM 中第一个“最终用途”委员会。其范围涵盖了为所有类型的电子设备制定材料标准。到 1960 年,通过
摘要。地貌测量学是一门定量描述地形特征的科学,传统上侧重于陆地景观的研究。然而,数字测深数据的可用性急剧增加,以及使用地理信息系统 (GIS) 和空间分析软件进行地貌测量研究的日益便捷,引起了人们对使用地貌测量技术研究海洋环境的兴趣。在过去十年左右的时间里,已经应用了大量地貌测量技术(例如地形属性、特征提取、自动分类)来表征从沿海地区到深海的海底地形。然而,地貌测量技术在海洋中的应用并不像在陆地环境中那样多样化,也不像在陆地环境中那样广泛。这至少部分是由于捕捉、分类和验证水下地形特征的困难。然而,陆地和海洋地貌测量应用之间有很多共同点,重要的是,在开发海洋地貌测量时,我们要从陆地研究的经验中学习。然而,并非所有陆地解决方案都可以被海洋地貌测量研究采用,因为海洋环境的动态、四维 (4-D) 特性在整个地貌测量工作流程中都会引起自身的问题。例如,水下定位问题、变量
上大气风的测量非常困难。在使用Sounding Rocket的化学释放实验中,我们一直在开发一种用于测量中性风的新技术。在轨迹上释放锂蒸气可以使多个地位位点的共振散射光进行成像。开发高的S/N成像和精确的三角剖分分析技术将有助于理解地球上的长期气候变化。2)开发稀有中性气氛测量技术
和伽马射线跃迁能量;开发原子辐射源作为辐射和波长标准以满足国家测量需求;研究中性原子和离子的激光冷却和电磁捕获的物理学;开发新的测量技术和方法,用于分析物理科学和工程领域的规范和应用研究,并提供相关服务。该研究所对新技术和先进技术进行通用和竞争前工作。NIST 的研究设施包括
按照传统定义,辐射测量是研究电磁辐射功率、光谱特性和其他参数测量的领域。该术语适用于波长范围从纳米到几十微米、所有光功率水平的电磁辐射特性。由于辐射测量的定义非常广泛,因此使用各种具有各种物理特性的测量设备或辐射计。因此,有必要为所有辐射测量保持一个共同的尺度,以便每个辐射计系列都可以追溯到该尺度。与辐射测量相关,基本国际单位制 (SI) 为光强度保留了一个基本单位,称为坎德拉。光强度测量技术已从 1948 年之前对各种标准蜡烛和灯的比较发展到 1979 年之后适用于低温辐射计的光功率测量。尽管测量技术不断改进和完善,但最先进的光强度测量的不确定度仅为 0.1% 1,而辐射测量的不确定度约为 0.01。这是任何 SI 基本单位测量中最差的精度。因此,人们仍在继续寻找更高精度的测量方法。量子光学(即单光子源和双光子源以及单光子探测器)的进步为辐射测量开辟了一种新方法,我们将其称为“量子辐射测量”。正如我们将看到的,这种称谓有些人为,因此需要澄清。就本评论而言,量子辐射测量法被定义为借助单光子和
主题 1:开发纳米和微米范围内的力值基准 开发微米和纳米力值基准在先进制造、微机电系统 (MEMS)、微流体、纳米技术以及制药和医疗设备等领域变得越来越重要。高精度表面张力和材料机械性能测量对于改进生产工艺和评估其质量至关重要,特别是在使用涂层或纳米沉积工艺的情况下。在上述领域,正在或已经开发出新的测量技术,关键是将这些技术应用于特定的测量对象并获得最终用户群体的认可。然而,开发这些尺度的力值的准确可靠的测量技术仍处于起步阶段。本提案旨在通过开发微米和纳米力值基准来解决这一差距,这些基准可用于校准和验证这些尺度的力值测量设备的准确性。因此,需要开发新技术和标准,以在低不确定度水平下生成已知的准确可靠的力值测量结果。本博士论文的目标是:1. 开发微力和纳米力的主要标准,可用于校准和验证这些尺度上的力测量设备的准确性。2. 研究表面相互作用、摩擦和粘附对微力和纳米力测量的影响。3. 评估相关的不确定性和影响因素