1 简介 4 2 特性 5 3 开发环境 8 3.1 系统环境 8 3.2 开发选项 8 3.2.1 CMSIS 包 8 3.2.3 MM IoT SDK 8 3.2.4 PlatformIO + MM IoT SDK 9 4 入门 10 4.1 默认跳线配置 11 4.2 AP 设备设置 12 4.2.1 更改信道、带宽、DTIM 周期 16 4.3 软件示例 17 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 18 5 软件开发 21 5.1 安装 CMSIS 包 21 5.2 构建和运行示例应用程序 24 5.2.1 UART 输出 30 5.3 更改示例应用程序 31 5.4 更改示例配置 33 5.5 在 SPI 和 SDIO 之间切换 34 5.6 更改网络堆栈38 6 硬件布局和配置 40 6.1 电源选择 40 6.2 使用外部调试器/编程器 41 6.3 更改 VFEM 电压 42 6.4 在 SDIO 和 SPI 之间切换 43 6.5 在 SMA 和 U.FL 连接器之间切换 44 6.6 断开传感器 45 7 功耗测量 46 7.1 功耗测量点 46 7.1.1 总体结构 46 7.1.2 HaLow 和 VFEM 47 7.1.3 整个系统功耗 48 7.2 功耗测量程序 49
摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
摘要:在林冠下使用无人机系统 (UAS) 为在茂密的林冠和灌木丛地区进行地面测量提供了一种潜在的宝贵替代方案。这项研究介绍了在具有挑战性的森林和地形条件下在林冠下飞行的消费级 UAS 的研究结果。部署该 UAS 是为了评估林冠下 UAS 摄影测量作为现场测量的替代方案,以获取树干直径以及森林研究地点的超高分辨率(~400,000 点/平方米)3D 模型。在一片原生、未经管理的桉树林中,在混合林下条件和陡峭地形下,从 99 根树干采集了 378 个基于胶带的直径测量值。这些测量值被用作基线,以评估基于林冠下 UAS 的摄影测量点云的直径测量精度。使用一种创新的基于胶带的方法,在不受数字地形模型影响的情况下评估了直径测量精度。介绍了一种创建这些点云的实用且详细的方法。最后,定义了一个称为圆周完整性指数 (CCI) 的指标,以解决在测量森林点云的树干直径时缺乏明确定义的点覆盖测量值的问题。建议在未来的研究中采用平均 CCI 的测量,以便能够使用不同的方法对森林点云的覆盖率进行一致的比较
1 简介 4 2 特性 5 3 开发环境 9 3.1 系统环境 9 3.2 开发选项 9 3.2.1 CMSIS 包 9 3.2.2 MM IoT SDK 10 3.2.3 PlatformIO + MM IoT SDK 10 4 入门 11 4.1 默认跳线配置 12 4.2 AP 设备设置 13 4.2.1 更改信道、带宽、DTIM 周期 17 4.3 软件示例 18 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 19 5 软件开发 22 5.1 安装 CMSIS 包 22 5.2 构建和运行示例应用程序 25 5.2.1 UART 输出 31 5.2.1.1 Windows 31 5.2.1.2 Linux 32 5.2.1.3 Mac OS 32 5.3 更改示例应用程序33 5.4 更改示例配置 35 5.5 在 SPI 和 SDIO 之间切换 36 5.6 更改网络堆栈 43 5.7 更新 BLUENRG-M2SP 模块固件 45 6 硬件布局和配置 48 6.1 电源选择 48 6.2 使用外部调试器/编程器 49 6.3 更改 VFEM 电压 50 6.4 在 SDIO 和 SPI 之间切换 51 6.5 在 SMA 和 U.FL 连接器之间切换 52 6.6 断开传感器 53 7 功耗测量 54 7.1 功耗测量点 54
1 简介 4 2 特性 5 3 开发环境 8 3.1 系统环境 8 3.2 开发选项 8 3.2.1 CMSIS 包 8 3.2.3 MM IoT SDK 8 3.2.4 PlatformIO + MM IoT SDK 9 4 入门 10 4.1 默认跳线配置 11 4.2 AP 设备设置 12 4.2.1 更改信道、带宽、DTIM 周期 16 4.3 软件示例 17 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 18 5 软件开发 21 5.1 安装 CMSIS 包 21 5.2 构建和运行示例应用程序 24 5.2.1 UART 输出 30 5.3 更改示例应用程序 31 5.4 更改示例配置 33 5.5 在 SPI 和 SDIO 之间切换 34 5.6 更改网络堆栈38 6 硬件布局和配置 40 6.1 电源选择 40 6.2 使用外部调试器/编程器 41 6.3 更改 VFEM 电压 42 6.4 在 SDIO 和 SPI 之间切换 43 6.5 在 SMA 和 U.FL 连接器之间切换 44 6.6 断开传感器 45 7 功耗测量 46 7.1 功耗测量点 46 7.1.1 总体结构 46 7.1.2 HaLow 和 VFEM 47 7.1.3 整个系统功耗 48 7.2 功耗测量程序 49
K t = 电机扭矩系数,单位为 N m/amp K e = 电机反电动势系数,单位为 V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,单位为 kg m2 D r = 转子(螺旋桨)直径,单位为 m ρ = 空气密度,单位为 kg/m3 T = 螺旋桨推力,NQ = 螺旋桨扭矩,单位为 N m CT = 螺旋桨推力常数 CP = 螺旋桨功率常数 Ixx 、I yy 、Izz = 无人机惯性矩,单位为 kg m2 m = 无人机质量,单位为 kg L x 、L y = 从 CG 到电机的力矩臂,单位为 m ω x 、ω y 、ω z = 机身轴旋转速度,单位为 rad/s ψ、θ、φ = 惯性轴到机身的欧拉角,单位为 rad ux 、uy 、uz =感知位置处的体轴速度 ux cg , uy cg , uz cg = 重心处的体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
第 5 节:计量系统要求................................................................................................54 5.1 目的和标准....................................................................................................................54 5.1.1 按日期适用性...................................................................................................54 5.1.2 按设备适用性...................................................................................................55 5.1.3 精度确定......................................................................................................56 5.1.4 优先选择最佳可用精度....................................................................................57 5.1.5 计量和遥测....................................................................................................57 5.1.6 计量系统的类型.............................................................................................57 5.2 系统控制和监控(瞬时数据).............................................................................58 5.2.1 联络线.............................................................................................................58 5.2.1.1 外部联络线.............................................................................................59 5.2.1.2 动态传输.............................................................................................60 5.2.1.3 内部联络线5.2.1.4 特殊情况和变压器连接....................................................................... 64 5.2.2 区域调节.................................................................................................... 65 5.2.3 发电调度数据........................................................................................ 65 5.2.4 发电储备................................................................................................ 66 5.2.5 系统恢复....................................................................................................... 66 5.2.6 通用遥测....................................................................................................... 66 5.2.7 系统控制和监测计量维护.................................................................................... 66 5.2.8 精度调查.................................................................................................... 67 5.2.9 电压和电流的特殊考虑和要求............................................................................. 67 5.3 计费(累加器数据)............................................................................................. 68 5.3.1 收集间隔和单位............................................................................................. 68 5.3.2 一次计费仪表精度............................................................................................. 68 5.3.3 备用计费表要求......................................................................................69 5.3.4 维护....................................................................................................69 5.3.5 精度检查和保留................................................................................................69 5.3.6 PJM 中大西洋 500 kV 计量点的位置...............................................................70 5.3.6.1 测量点补偿.......................................................................................70 5.3.7 地理上不连续的负载.......................................................................70 5.3.8 发电计费计量.........................................................................................................70 5.3.9 小型能源计费计量.........................................................................................71
a 3D 光学计量(3DOM)部门,布鲁诺凯斯勒基金会(FBK),Via Sommarive 18,38123,特伦托,意大利 franex@fbk.eu,http://3dom.fbk.eu b 特温特大学,地理信息科学与地球观测学院(ITC),地球观测科学系,P.O.Box 217,7500AE Enschede,荷兰 m.gerke@utwente.nl 第三委员会 - WG 1 关键词:图像匹配、DSM、马尔可夫随机场、图切割、平滑 摘要:如今,图像匹配技术可以提供非常密集的点云,它们通常被认为是 LiDAR 点云的有效替代方案。然而,与 LiDAR 数据相比,摄影测量点云通常具有更高水平的随机噪声和存在较大异常值的特点。这些问题限制了摄影测量数据在许多应用中的实际使用,但仍需找到增强生成点云的有效方法。在本文中,我们专注于从密集图像匹配点云计算出的数字表面模型 (DSM) 的恢复。摄影测量 DSM,即表面的 2.5D 表示,仍然是从点云派生的主要产品之一。提出了四种专门用于 DSM 去噪的不同算法:标准中值滤波方法、双边滤波、变分方法(TGV:总广义变分),以及一种新开发的算法,该算法嵌入马尔可夫随机场 (MRF) 框架并通过图计算进行优化
K t = 电机扭矩系数,N m/amp K e = 电机反电动势系数,V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,kg m2 D r = 转子(螺旋桨)直径,米 ρ = 空气密度,kg/m3 T = 螺旋桨推力,N Q = 螺旋桨扭矩,N m C T = 螺旋桨推力常数 C P = 螺旋桨功率常数 Ixx ,I yy ,Izz = 无人机惯性矩,kg m2 m = 无人机质量,kg L x ,L y = 从 CG 到电机的力臂,米 ω x ,ω y ,ω z = 机身轴旋转速度,弧度/秒 ψ,θ,φ = 惯性轴到机身的欧拉角,弧度 u x ,u y , u z = 感测位置处的身体轴速度 u x cg , u y cg , u z cg = 重心处的身体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
图2杀死CHO-K1细胞的摇瓶中的曲线,抗生素尿霉素的浓度不同。实验总共进行了四个重复。每隔第二天(用黑色箭头表示)通过离心和在新鲜培养基中与补充纯嘌呤霉素重悬于细胞分离中。(a)描绘的是由Kuhner Tom设备确定的氧转移速率(OTR)。为了清楚起见,随着时间的推移,每个第十二个测量点都被标记为符号。在从数据中删除了由于温度适应引起的每个介质交换后,OTR数据中的单个Outliner。有关原始数据,请参阅图S2A。两个在线监视的生物学重复用实线和填充符号或虚线和开放符号表示。(b)离线培养了另外两种生物学重复。离线分析的生物学重复被描述为固体和填充的符号或虚线和开放符号。通过离线摇瓶通过Neubauer室法在每个培养基交换处确定可行的细胞密度(VCD)。(c)可行性是从相同样品中计算出来的。在Kuhner Tom设备中进行培养。培养条件:100 ml玻璃瓶,温度(T)= 36.5 C,摇动频率(n)= 140 rpm,摇动直径(D 0)= 50 mm,填充体积(V L)= 20 ml,5%CO 2,70%rel。哼。启动细胞密度:5 10 5细胞/mL。