发展性计算障碍 (DD) 是一种学习障碍,会影响数字算术技能的习得。患者在数字处理方面表现出持续的缺陷,这与大脑激活和结构异常有关。据报道,发展性计算障碍患者的顶叶皮层(包括顶内沟 (IPS))以及额叶和枕颞皮层灰质减少。此外,计算障碍患者的白质存在差异,例如下纵束 (ILF) 和上纵束 (SLF)。然而,这些结构差异的纵向发展尚不清楚。因此,我们的目标是研究患有和不患有发展性计算障碍的儿童的灰质和白质的发展轨迹。在这项纵向研究中,我们以 4 年为间隔两次收集了 13 名患有发展性计算障碍的儿童(8.2-10.4 岁)和 10 名正常发育 (TD) 儿童(8.0-10.4 岁)的神经心理学测量值和 T1 加权结构图像。使用基于体素的形态测量法对纵向数据进行体素级灰质和白质体积估计。本研究首次揭示了 DD 儿童在发育过程中灰质和白质体积持续减少。双侧下顶叶包括 IPS、缘上回、左楔前叶、楔叶、右枕上回、双侧颞下回和颞中回以及岛叶均发现灰质减少。双侧 ILF 和 SLF、下额枕束 (IFOF)、皮质脊髓束和右丘脑前部放射 (ATR) 的白质体积减少。在行为上,DD 儿童在基线和随访中在各种数字任务中的表现明显较差,证实了数字处理方面的持续缺陷。本研究结果与文献一致,文献表明 DD 儿童在数字网络中的灰质和白质体积减少。我们的研究进一步阐明了大脑发育的轨迹,揭示了这些已知的颞叶和额顶叶长联系纤维和相邻区域的结构差异
生产和运输混凝土与较大的环境足迹结合在一起。制造混凝土所需的材料之一是水泥,它被认为是生产最污染的材料之一。转移到地球材料将大大降低环境影响以及生产成本。此外,提出的解决方案的可逆性可重复使用基本材料。将通过聚合物砂复合材料来确定并最终解决更具体的问题。
本文介绍了一种新颖的胎儿脑部自动生物测量方法,该方法旨在满足中低收入国家的需求。具体而言,我们利用高端 (HE) 超声图像为低成本 (LC) 临床超声图像构建生物测量解决方案。我们提出了一种新颖的无监督域自适应方法来训练深度模型,使其对图像类型之间显著的图像分布变化保持不变。我们提出的方法采用双对抗校准 (DAC) 框架,由对抗途径组成,可强制模型对以下方面保持不变:i) 来自 LC 图像的特征空间中的对抗性扰动,以及 ii) 外观域差异。我们的双对抗校准方法估计低成本超声设备图像上的小脑直径和头围,平均绝对误差 (MAE) 为 2.43 毫米和 1.65 毫米,而 SOTA 分别为 7.28 毫米和 5.65 毫米。
引用Kalpoe,J。S.(2007年,6月28日)。量子病毒学:通过定量测量改善病毒感染的治疗。从https://hdl.handle.net/1887/12100
自量子物理学诞生以来,“量子”和“经典”世界之间的界限问题就一直备受关注,但今天,这一领域仍有许多悬而未决的问题,而社会对此还没有达成共识。这里最著名的问题可能是测量问题:决定宏观(“经典”)仪器在测量微观(“量子”)系统特性时的行为的规则如何遵循量子力学方程(以及它们是否遵循)。首先,有必要说明的是,量子理论中采用的术语与一般物理术语有本质区别。通常在物理学中(以及在日常生活中),测量被理解为使用测量设备对某些物理量和参考值进行比较。在这种情况下,测量误差通常是由设备的不完善而不是由所研究系统的属性决定的,可以通过改进仪器和测量程序来减少。在量子
ABR 培训的测量标准不支持当前入门级课程的最低标准。使用工作和/或实验室相关数据。需要对培训文件和计划进行全面审查,以确保准确陈述 PMEL 职业阶梯的培训要求。并且在技术学校和在职培训中都提供适当的培训 AFR 39-1 职位描述适用于所有技能水平
讨论:人工智能系统中可以/应该被测量的属性,以及哪些属性具有/缺乏指标和测量方法;用于测量人工智能的不同测量方法及其优势/局限性;指标的不同类型和用途,以及指标可以具有的各种属性;所选指标和测量方法对评估的影响;何时需要通过玻璃盒访问人工智能系统以进行评估,以及人工智能系统的设计/方法何时会影响指标/测量方法的选择。
未经出版商事先书面许可,不得以任何形式或任何方式(电子、机械、影印、录音或其他方式)复制、存储本出版物的任何部分或将其存储在检索系统中或进行传输。可直接从英国牛津的 Elsevier 科学与技术权利部申请许可:电话 (+44) (0) 1865 843830;传真 (+44) (0) 1865 853333;电子邮件:permissions@elsevier.com。或者,您可以访问 Elsevier 网站 http://elsevier.com/locate/permissions,然后选择“获得使用 Elsevier 材料的许可”,在线提交您的请求。
分离染色体的流式细胞术是细胞遗传学的一种新方法,可快速测量单个中期染色体。在这种方法中,用适当的荧光染料染色的水悬浮液中的染色体被限制在激发染料的窄激光束中高速流动。发射的荧光通过光度法测量,累积的数据形成染色体荧光的频率分布。该频率分布的峰值归因于单个染色体或具有相似荧光的染色体组;峰值平均值与染色体荧光成正比,峰值面积与染色体出现频率成正比。因此,频率分布可作为核型(1、2)。此外,流式分选可根据染色体的染色特性分离染色体(3、4),这与传统的中期染色体纯化方法不同,后者依赖于速度或等密度沉降、区域离心或选择性过滤(5)。纯化单个中期染色体很重要,原因如下。富集或纯染色体部分已进行生化分析,以提供有关 DNA 或蛋白质结构的信息(6),将遗传信息转移到整个细胞(7-9),或通过体外杂交绘制基因图谱(10)。但一般来说,传统技术无法提供足够纯度的染色体,无法进行高分辨率生物或生化研究。通过基于溴化乙锭荧光的流式分选,我们以 90% 的纯度将雄性鹿 Muntiocus muntjak (2n = 7) (4) 的每个染色体和中国仓鼠 M3-1 细胞系的 14 种染色体类型分离成 8 个染色体组 (1, 3)。在我们之前对溴化乙锭染色的人类染色体的研究中,我们仅从雄性 (2n = 46) 的 24 种染色体类型中分辨出 8 个染色体组 (2, 3)。在本研究中,使用 DNA 荧光染料 33258 Hoechst 和改进的仪器,
