抽象铁稳态对于维持正常的生理脑功能很重要。在两个独立的样本中,我们研究了基底神经节(BG)中的铁浓度与隐式序列学习(ISL)之间的联系。在研究1中,我们使用定量敏感性映射和与任务相关的fMRI来检查年轻和老年人中区域铁浓度测量,脑激活和ISL之间的关联。在研究2中,我们使用fMRI衍生的度量在老年人的年龄样本中使用了fmri衍生的度量来检查脑铁与ISL之间的联系。获得了三个主要发现。首先,在两项研究中,BG铁浓度与ISL呈正相关。第二,ISL对年轻人和老年人都很健壮,并且在两个年龄段的额叶区域中都发现了与性能相关的激活。第三,BG铁与额叶区域中与任务相关的粗体信号的正相关。这是研究脑铁积累,功能性脑激活和ISL之间关系的第一项研究,结果表明,在此特定任务中,较高的脑铁浓度可能与更好的神经认知功能有关。
采用微下拉法生长了一系列 Yb 3 + 掺杂的钇铝单斜 Y 4 Al 2 O 9 (Yb:YAM) 单晶,其中 Yb 3 + 离子浓度分别为 0.1、1、5 和 10 at.%。低温吸收测量表明 Yb 3 + 结合在几个明确的中心。位置选择性激发和发射实验可以定位系统中检测到的主要中心的基态 2 F 7/2 和 2 F 5/2 流形的能级。测量了 10 至 300 K 范围内的跃迁能量和共振跃迁线宽的温度依赖性,并且可以通过一个声子近共振过程很好地描述。还研究了 Yb 3 + 浓度对 Yb:YAM 荧光光谱结构的影响。观察到随着 Yb 3 + 浓度的增加,来自低能位点的发光占据了发射光谱的主导地位。分析了在每个位点的选择性激发下在 10 至 300 K 温度范围内记录的荧光动力学。© 2020 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
败血症被识别为一种临界疾病,其特征是威胁生命的急性器官功能障碍,这是由宿主对感染的失调反应引起的(Singer等人。,2016年)。认识到败血症的重力,2017年,包括世界卫生大会和世界医疗保健组织在内的全球卫生组织将其检测,预防和治疗优先考虑全球(Reinhart等人(Reinhart等),2017年; Paoli等。,2018年)。估计败血症会影响4-6%的成人住院入院(Rhee等人 ,2017年; Giamarellos-Bourboulis等。 ,2023; Mellhammar等。 ,2023年),在重症监护病房中约有三分之一的患者(ICU)中发现(Sakr等人 ,2018年)。 仅在2017年,全球近4900万人就受到了败血症的影响,有1100万人屈服于这种情况,表明死亡率约为20%(Rudd等人。 ,2020)。 尤其是在美国,每年大约有170万例败血症病例,这种趋势每年都在增加。 这种情况仅在美国每年造成近25万人死亡,这使败血症成为非心脏ICU死亡的主要原因(Vincent等人。 ,2009年; Rhee等。 ,2017年)。 尽管从2002年到2012年,败血症患者对欧洲医院的ICU持续稳定,但该疾病的严重程度显着增加(Vincent等人。 ,2018年)。 死亡率差异很大,但据报道至少为10%,在涉及败血性休克的情况下跃升至40%(Vincent等人。 ,2014年; Rhee等。 ,2017年)。估计败血症会影响4-6%的成人住院入院(Rhee等人,2017年; Giamarellos-Bourboulis等。,2023; Mellhammar等。,2023年),在重症监护病房中约有三分之一的患者(ICU)中发现(Sakr等人,2018年)。仅在2017年,全球近4900万人就受到了败血症的影响,有1100万人屈服于这种情况,表明死亡率约为20%(Rudd等人。,2020)。尤其是在美国,每年大约有170万例败血症病例,这种趋势每年都在增加。这种情况仅在美国每年造成近25万人死亡,这使败血症成为非心脏ICU死亡的主要原因(Vincent等人。,2009年; Rhee等。,2017年)。尽管从2002年到2012年,败血症患者对欧洲医院的ICU持续稳定,但该疾病的严重程度显着增加(Vincent等人。,2018年)。死亡率差异很大,但据报道至少为10%,在涉及败血性休克的情况下跃升至40%(Vincent等人。,2014年; Rhee等。,2017年)。,2018年),当未经处理的败血症时,超过30%(Liu等人此外,败血症治疗的财务负担很大。在美国,败血症管理的医院费用在所有疾病中最高,2011年超过200亿美元,2013年超过230亿美元,持续的成本超过240亿美元,占美国医疗保健总支出的13%(Arefian等人。,2017年; Reinhart等。,2017年; Paoli等。,2018年; Buchman等。,2020)。
学生必须向其论文委员会提交官方论文提案表(http://www.gradcollege.txstate.edu/forms.html)和提案。论文提案因部门和纪律而异。请参阅您的部门以获取建议指南和要求。在签署表格并获得委员会成员的签名后,如果计划的要求,研究生顾问的签名和部门主席的签名后,学生必须提交论文提案表格,并提交一份提案的副本,授予研究生学院院长批准,以便在研究论文之前进行研究。如果论文研究涉及人类受试者,则学生必须在向研究生学院提交建议表之前,在提交提案表格之前获得德克萨斯州机构审查委员会的豁免或批准。IRB批准信应包括在提案表中。如果论文研究涉及脊椎动物动物,则提案形式必须包括德克萨斯州IACUC批准法。建议在5399a的学生入学结束前将论文提案表提交给研究生学院的院长。未能及时提交论文提案可能会导致毕业延迟。
摘要在包含物和不同材料的基质组成的复合材料中,一些包含物彼此紧密地位于彼此之间。如果夹杂物的材料特性与基质的材料特性高,则场浓度发生在紧密的夹杂物之间的狭窄区域中。在复合材料和成像理论中,定量地理解场浓度是重要的,因为它代表了压力或场的增强。过去30年左右,在分析这种野外浓度方面的情况下取得了重大进展:最佳估计和渐近表征限制了场浓度,在电导率方程(或抗层弹性),线性弹性系统和Stokes系统的情况下得出了现场浓度。本文的目的是以连贯的方式审查其中的一些。
基于 mRNA 的疗法不同于小分子和其他生物制剂,它们代表着重大的分析挑战。为了在竞争激烈的市场中竞争并符合监管标准,需要对临床前/临床测试和批次放行进行 mRNA 表征。更快、更可靠的结果需要创新的解决方案来应对这些分析挑战。核酸浓度测定是通过测定 260 nm 分析波长下的紫外 (UV) 吸光度来测量的。这些吸光度测量允许科学家根据已知的 RNA 消光系数来测量核酸浓度。它们在 260 nm 处的最大吸光度峰的光谱特征与核酸浓度成正比。这种紫外核酸定量方法的优点是简单、直接,并且只需要少量样品即可进行测量。然而,分析实验室遇到的一个挑战是其特异性的局限性,因为吸收相似波长的基质成分会导致随后的核酸浓度测定不准确。我们观察到,当前传统的基于比色皿的 UV 解决方案中使用 1 cm 比色皿和/或较小固定光程长度的标准固定光程长度 UV 仍然无法解决给定测量的质量问题,并且需要数小时的调查时间。使用稀释因子(这会增加制备时间和变异性)和固定光程长度测量来确定溶液中 UV 发色团的浓度,并不能提供一种可在公司或流程内平台化的易于转移且可靠的方法。如今,研究人员可以在存在化学和核酸杂质(尤其是 DNA 和 dsRNA)的情况下选择性地量化核酸吸光度。分析软件使用全光谱数据和高级算法来识别核酸杂质并提供校正的核酸浓度。
摘要:可以通过合适的血糖控制来预防1型糖尿病(T1D)的许多并发症。糖化血红蛋白(HBA1C)可能是早期检测该疾病代谢不平衡特征的标志物之一。但是,在大量患者中未能实现对糖尿病的最佳控制。证明,许多因素(社会人口统计学,心理和临床)导致了这种情况。该研究的目的是确定通过T1D患者中血红蛋白浓度测量的糖尿病控制的因素。在研究组中通过HBA1C测得的更好的糖尿病控制的独立因素包括较高的疾病接受度,较高的营养依从性,较低的BMI和较低的饮食失调风险。描述决定因素将允许改善提供给T1D患者的护理体系,并构成与自我保健和接受该疾病有关的重要心理变量。
未转化的反应物。在此步骤中,氢气可从混合物中分离出来,并在反应中重新使用。在未来以氢气为主要能源载体的情况下,分离和/或纯化能量昂贵的氢气将变得更加重要。[1–3] 一种有前途的方法是使用由吸氢金属(如钯和钯合金)制成的氢选择性膜。[4,5] 此类膜的渗透性取决于两侧的表面性质(解离/复合)和本体渗透性(扩散和溶解度)。[4] 人们已经进行了大量研究,以寻找比钯具有更高渗透性的廉价材料(例如钒、铌、钽及其合金[6–10]),然而,昂贵的钯和钯基合金由于其良好的表面性质仍然是优越的膜材料。 [5,11] 如果可以修改诸如钒基合金等廉价材料的表面性质以匹配钯的性质,它们将彻底改变该技术。尽管这个目标相当简单,但是对于这些理想的表面性质仍然存在知识缺口。大多数著作引用了表面科学的概念,描述了氢的物理吸附、解离(屏障)和化学吸附。[12] 但是,需要额外的步骤 - 跳跃到亚表面位点和相邻的本体位点 - 才能充分模拟渗透过程。尽管如此,由于步骤之间的复杂相互作用,建模的预测能力有限 [4,6,13],更重要的是 - 由于缺乏原位氢分析,只能通过与非常基础的实验(渗透动力学,例如参考文献 [14])进行比较才能进行实验验证。Baldi 等人已经证明了电子能量损失谱可以作为纳米颗粒中本体氢的分析方法。 [15] 在本文中,我们进一步开发了通过反射电子能量损失谱 (REELS) 原位探测氢化物薄膜表面氢含量的方法。该方法应用于实验方法,其中可以有意改变膜的表面性质并在操作条件下确定其氢含量。我们通过直接观察 Pd/V 复合膜中渗透对氢含量的依赖性证明了限速步骤的存在。建模得出了各个层的相关性,从而可以将结果与从氢吸收中获得的结果联系起来
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。
黑色素瘤是一种放射性癌症。黑色素瘤放射性可能是由于几个因素,例如色素沉着,抗氧化剂防御和高脱氧核糖核酸(DNA)修复功效。然而,辐照诱导RTK的细胞内易位,包括CMET,它调节对DNA损伤激活蛋白质的反应并促进DNA修复。相应地,我们假设共同靶向的DNA修复(PARP-1)和相关激活的RTK,尤其是C-MET,可能会使野生型B-RAF原始癌,丝氨酸/苏氨酸激酶(WTBRAF)梅拉瘤呈hird-type B-RAF原始型原型,其中RTK经常上升。首先,我们发现PARP-1在黑色素瘤细胞系中高度表达。Olaparib或其KO抑制PARP-1抑制了黑色素瘤细胞对放射疗法(RT)的敏感性。同样,克唑替尼或其KO放射敏感的特异性抑制作用使黑色素瘤细胞系抑制。从机械上讲,我们表明RT会导致C-MET核易位与PARP-1相互作用,从而促进其活性。这可以通过C-MET抑制来逆转。因此,与C-MET和PARP-1抑制相关的RT不仅会对肿瘤生长抑制作用产生协同作用,而且在治疗后所有动物的肿瘤再生控制中也产生了协同作用。因此,我们表明在WTBRAF黑色素瘤中,将PARP和C-MET抑制与RT结合起来似乎是一种有希望的治疗方法。
