本文介绍了 CETENA 和意大利海军开展的活动,通过自动船体监测系统评估新型 FREMM 护卫舰的行为,并通过专门开发的后处理工具分析记录数据来预测船舶结构的预期疲劳寿命。关键词:船体监测系统;疲劳;长期预测;决策支持系统;虚拟传感器。引言未来海军舰艇设计的实际主要目标是提高性能、强度和寿命,同时减轻重量、油耗、脆弱性和特征。尽管目前可用的设计工具(数值代码、FEM/BEM 模型等)为设计师提供了很大帮助,允许以相对有限的精力和时间探索出许多替代解决方案,但预测船舶在波涛汹涌的大海中的行为,特别是结构的疲劳寿命目前还无法以高成本实现。船上安装监测系统可以监测和记录与整艘船或局部结构相关的大量全尺寸数据。为了实现这一目标,意大利海军要求在 FINCANTIERI 设计和建造的新型 FREMM 护卫舰上安装船体监测系统 (HMS):本文描述的系统由 CETENA 设计和开发,符合附加船级符号 RINA MON-HULL+S。HMS 监测和记录船舶刚体运动、船体梁弯曲力矩、结构细节的局部应变、船舶结构细节经历的疲劳循环、作用于船体的压力、海况和船舶的运行条件等数据。
海上风能和波浪能是尚未开发的可再生资源。然而,这些资源的间歇性和高昂的能源成本对其大规模开发构成了一些重大挑战。尽管人们认为储能系统可以减轻或降低能源波动以支持可靠的电网,但所提出的解决方案进一步增加了资本支出。这主要是由于缺乏对海上可再生能源系统与储能系统的系统技术经济评估。此外,先前文献中报道的海上风能和波浪能系统的整合显示出许多好处,例如电力平滑和成本降低。本文研究了海上风能和波浪能的间歇性及其可调度性,并提出了一种等效的储能系统,以实现与风能和波浪能组合系统相同的能源波动水平。这为海上能源农场的电力平滑性能和能源供应的稳定性提供了透彻的了解。通过高保真成本模型对独立的海上风电系统、带有储能系统的风力涡轮机和混合动力装置系统进行了经济评估和比较。此外,研究还针对全球多个地点的三种系统配置的敏感性,这些地点被选定用于应对典型的风和海况。结果表明,与其他两种系统配置相比,混合风能和波浪能发电系统在降低能源波动性和提高海洋能源调度能力方面具有优势,同时成本极具竞争力。此外,该研究旨在为开发商、投资者和政策制定者在开发海洋可再生能源系统的前期规划阶段提供指导和支持。
在设计大型浮动机场或航空母舰时,船舶设计师需要解决飞机着陆对这些结构的影响的瞬态动力学问题。解决这个问题的困难涉及以下三个阶段。首先,这个问题需要对流体、飞机、浮动结构及其相互作用进行跨学科研究。第二,集成系统是一个时间相关系统,其中飞机和浮动体之间的相对位置会因飞机着陆运动而发生变化。第三,在无限域中定义的流体需要特殊的数值处理。由于这些困难,迄今为止,只有少数关于这个瞬态问题的简化研究被报道。Watanabe 和 Utsunomiya (1996) 使用有限元 (FE) 程序,给出了圆形超大型浮动结构 (VLFS) 上规定的脉冲载荷引起的弹性响应的数值结果。Kim 和 Webster (1996) 以及 Yeung 和 Kim (1998) 使用傅里叶变换方法研究了无限弹性跑道的瞬态现象。Endo (1999) 采用 FE 方案和 Wilson- � 方法 (Wilson, 1973; Bathe, 1982) 研究了飞机在恶劣海况下从 VLFS 起飞和降落的瞬态行为,使用施加在结构节点上的三角形时间脉冲载荷来表示由飞机重量引入的载荷。Kashi-wagi 和 Higashimachi (2003) 以及 Kashiwagi (2004) 根据飞机在跑道上的位置、速度和载荷的规定时间变化曲线,介绍了飞机着陆和起飞引起的浮筒式 VLFS 的瞬态弹性变形。在这些报告中,没有考虑飞机和 VLFS 之间的相互作用,因为飞机着陆或起飞对 VLFS 施加的载荷是规定的。当使用其他可用的数学模型和软件包来解决此类飞机-VLFS-水相互作用动态问题时,就会出现困难。例如,Xing (1988)、Xing 和 Price (1991) 开发的数值方法,
伊丽莎白女王号航空母舰是英国皇家海军两艘新一代航空母舰中的第一艘。伊丽莎白女王级航空母舰的主要作用是提供固定翼航母打击能力,其次要作用是使用全系列英国前线旋翼机支持两栖作战。为了推导支持这种能力的舰载直升机操作极限 (SHOL),空中测试和评估中心 (ATEC) 采用了实用的首航飞行试验 (FOCFT) 和分析方法。虽然本文概述了 SHOL 推导过程,但重点关注 FOCFT 的实施,由于舰船的大小和复杂性以及舰船计划的有限时间,FOCFT 带来了重大挑战,需要新的解决方案。Chinook HC Mk 5 和 Merlin HM Mk 2 被选为试验飞机,因为它们都与两栖攻击角色高度相关,并且之前曾用于支持对其他英国类型的分析许可。通常在 SHOL 测试期间,可能会花费大量时间来定位船舶以获得理想的测试气象条件,并进行机动以产生特定的相对风。此外,测试飞机可能会花费一半以上的时间在航线上。只要有可能,就会同时进行一架 Merlin 和一架 Chinook 的试飞,以最大限度地发挥每种大气和相对风条件的输出,每架飞机都在一个航线和进近中进行多次着陆。协调和排序飞机和测试条件是一项重大挑战,特别是在达到极限条件时。开发并实施了自动分析技术,以便快速评估每架飞机和操作点的着陆数据,为飞行之间的测试计划提供信息。在短短两周内,总共进行了 987 次登陆演习,包括在海况 5 级的条件下,在白天和夜间对 Merlin 和 Chinook 的最大总重量进行操作。然后利用分析方法根据 FOCFT 数据为 Apache 和 Wildcat 提供许可,并为非航空母舰 (HOSTACS) 的直升机操作提供建议。
通过分析全尺寸船舶结构监测数据评估和预测船舶结构的疲劳寿命 Lt Salvatore La Marca(意大利海军)、Giovanni Cusano(CETENA S.p.A.) 设计未来海军舰艇的实际主要目标是提高性能、强度和寿命,同时降低重量、油耗、脆弱性和特征。目前可用的设计工具(数字代码、FEM/BEM 模型等)为设计师提供了很大的帮助,使他们能够以相对有限的精力和时间探索多种替代解决方案:无论如何,考虑到船舶结构疲劳效应的船舶寿命预测目前还无法以高可承受水平实现。在船上安装和运行自动船体监测系统 - 从多个传感器获取数据并从结构强度和疲劳寿命的角度对其进行分析 - 可以建立一个与船舶在运行条件下的行为相关的信息数据库。CETENA 设计和开发的 HMS(船体监测系统)已安装在意大利海军拥有和运营的许多船舶上,从护卫舰到航空母舰:该系统监测和记录船舶刚体运动、作用于船体的压力、船体梁的弯矩、结构细节的局部应变、海况和船舶的所有运行条件的数据;此外,它通过雨流法计算船舶结构经历的疲劳循环次数、幅度和平均值。CETENA 和意大利海军联合设计并由 CETENA 开发的后处理工具可以简单地分析这些数据,其中包括在可配置的时间范围内对统计和疲劳数据进行长期推断:根据前几年经历的应力和疲劳循环,通过适当的推断算法评估未来作用于船舶结构的最大应力和预期的疲劳寿命。主要附加值在于一方面可以从 CBM 角度管理船舶结构的维护,另一方面可以根据船舶的设计运行情况评估船舶在过去和未来几年的有效行为:这样,未来船舶的设计可以得到改进,并更好地根据海军的具体需求进行定制。意大利海军采用的疲劳寿命估算和基于经验和测量数据的设计方法的下一步是扩展 HMS 功能:CETENA 正在开发的新系统不仅会通过船上的实际传感器获取信息,还会通过“虚拟”传感器获取信息,即它将根据系统内部实施的 RAO 评估应力和疲劳循环,从而增加测量点的数量而不会对船舶产生影响(不添加传感器或电缆):计算值将与配备传感器的其他点的测量值进行交叉检查,即使在“虚拟”传感器中也能获得可承受性。就轻质复合材料的使用而言,意大利海军舰艇也进行了许多改进:这种创新结构也经常由 CETENA 定制的监控系统进行测量和监控,以评估其设计并获取有关其在运行条件下的行为的知识,最终目的是改进其未来舰艇的设计。