人类依靠水进行大部分活动。此外,水在几乎所有行业中都是必不可少的。由于全球人口不断增长,对淡水的需求不断增长,这对世界构成了严重威胁,因为世界面临着水资源短缺危机,尤其是在缺水地区,例如处于这一问题中心的中东。因此,许多国家已将海水淡化视为重要的淡水供应。海水淡化是将溶解的盐从海水中分离出来以生产供人类使用的淡水的过程。2021 年全球海水淡化市场价值为 145 亿美元,预计到 2031 年将达到 355 亿美元的市场价值。事实上,淡化海水是沙特阿拉伯的主要水资源。沙特阿拉伯每天生产超过 760 万立方米 (MCM) 的淡化水,占全球淡化水总量的 22%,可满足每天 960 万立方米的城市需求,其余部分则通过地下水源供应。
• 概念阶段 - 60 份符合条件的申请材料,其中 9 份来自学术界,21 份来自工业界,30 份来自个人申请者。 • 获得资助的概念阶段团队中有 14/20 在 W2W 之前未获得过 WPTO 的资助。 • W2W 针对的是将波浪能和海水淡化结合起来的企业家。团队建立了战略合作伙伴关系,将这些技能组合在一起(示例团队:夏威夷大学、印度理工学院、乌普萨拉大学) • 团队与一系列组织建立了合作伙伴关系,这些组织为团队提供直接支持(财务和实物)和奖项推广。 • 所有奖项阶段均通过 WPTO 和 NREL 新闻稿、HeroX 以及与团队的直接沟通公开宣布。 • 该奖项的近期部署机会为未来的海洋能源部署提供了新的经验教训,并为未来的研发提供了关键领域,旨在改善海洋能源的长期成本降低途径。 • Prize 一直致力于持续关注最终用户,特别是政府任务和联邦紧急事务管理局、海军和美国国际开发署的采购,旨在建立直接的研发伙伴关系
摘要:对可再生能源的研究是研究的积极领域,光伏和风是最具代表性的技术。基于海水的温度梯度,有希望的可再生能源是海洋热能转化(OTEC)。这项技术具有两个矛盾的特征,因为其效率相对较低,另一方面,其能源几乎是无限的。OTEC研究专注于优化能量提取,并将不同的技术用于此目的。本文介绍了全球OTEC技术的进步和应用的回顾。在整个文档中,分析了深海水的不同用途;此外,审查了通过海洋温度梯度产生能量的当前系统,并突出显示了每种方法的主要优点和缺点。也详细介绍了全球及其在计划阶段的技术运营,施工变化以及已开发的项目。两个主要的结论是,这项技术仍在开发中,但这是非常有希望的,尤其是对于几乎没有饮用水的地区而言。第二,鉴于高度实施成本和较低的转换效率,该技术的发展必须由政府赞助。
由于水资源短缺和全球气候变化趋势,通过海水淡化获取饮用水正日益成为一种选择,尤其是使用反渗透 (RO) 膜技术。运营反渗透海水淡化厂涉及多项费用和能源消耗,占很大比重。多项研究表明,与其他可再生能源相比,风能的能源成本较低,因此,应成为与 RO 海水淡化系统结合使用以使用可持续能源净化水的首选。因此,在本文中,我们基于模拟模型研究了使用风力驱动 RO 海水淡化系统的可行性,该系统有压力容器储能和无压力容器储能,以及使用 Clark 泵进行小规模能量回收。将两种方案的性能与几种风力模式进行了比较。正如预期的那样,缓冲和能量回收实现了更高的水产量和更好的水质,证明了能量存储/回收系统对于风力供电海水淡化厂的重要性。
开发更高效、更具成本效益的海水淡化技术对于充分发挥海水淡化能力应对淡水短缺的巨大挑战至关重要。海水淡化液流电池是一种新兴的电化学装置,能够集成储能和海水淡化功能,是一种很有前途的可扩展且经济高效的海水淡化电化学技术。在此,我们报告了流速对甲基紫精/亚铁氰化钠 (MV/Na 4 [Fe(CN) 6 ]) 海水淡化液流电池 (DSRFB) 性能的影响。研究发现,增加流速可以降低电池电阻并提高能量效率、功率密度和海水淡化效率。具体而言,当流速从 20 mL/min 增加到 60 mL/min 时,MV/Na 4 [Fe(CN) 6 ] DSRFB 的能量效率从 56% 增加到 64%,功率密度从 14.72 mW/cm 2 增加到 15.33 mW/cm 2 。更重要的是,DSRFB 的脱盐率从 20 mL/min 时的 86.9% 提高到 60 mL/min 时的 93.9%。© 2021 Elsevier Ltd. 保留所有权利。
摘要。已经开发了一种方案,用于使用低电位能量来加热水,包括用于海水脱盐的目的。评估了卡利纳周期的有效性。建议在水处理周期中使用加热水。这个周期可以在海洋附近的地热源上实施。基于可再生能源的装置以环保的方式适合该国经济,并提高能源安全。因此,循环被整合到海水脱盐系统中。但是,使用地热能存在一些缺点。首先,它仅在世界某些地方可用,因为需要地质活动区域才能获得热量。此外,安装必要的设备和基础设施可能会昂贵,这使得某些人很难获得这种能源。最后,去除热过程也会导致环境下降,因为它会损害该地区敏感的生态系统和水源。
随着发展中国家生活质量的提高和全球变暖,全球对空调的需求正在迅速增加。政府间气候变化专门委员会(IPCC)估计,仅住宅空调的需求就将从 2000 年的每年 300 太瓦时 (TWh/年) 上升到 2050 年的 4000 和 2100 年的 10,000(Henley 2015)。其他估计预测,制冷需求将在 2070 年左右超过供暖需求,如图 1 所示(Isaac and van Vuuren 2009)。空调系统的能源成本可能非常高,特别是在岛屿地区,由于依赖液体化石燃料作为主要发电资源,电力成本通常很高。位于温跃层之下的深海是一个几乎无限的吸热器(冷却源),为在海边开发成本较低的区域制冷系统创造了机会。海水空调 (SWAC) 是一种区域冷却技术,利用深层冷海水进行冷却,即使在热带地区,深层冷海水的温度也可低至 3 – 5 °C (美国国家海洋和大气管理局,2018 年),如图 2 所示。人们广泛研究了海洋表面和深层海洋之间的温差,以用于发电和海水淡化目的 (Khosravi 等人,2019 年;Jung 和 Hwang,2014 年;Semmari 等人,2012 年;Odum,2000 年)。SWAC 于 1970 年代开始被考虑,并在 1990 年代初获得了发展势头。它适用于热带和赤道地区,这些地区海底水深测量允许使用相当短的冷海水引水管道 (Syed 等人,1991 年)。 SWAC 取代了传统空调系统中使用的冷却器,大大降低了电力消耗和制冷成本(Makai Ocean Engineering 2015 )。SWAC 系统的电力成本通常比传统空调系统低 80%(Van Ryzin and Leraand 1991;Van Ryzin and Leraand 1992 ),约占 SWAC 总项目成本的 20%(拉丁美洲发展银行 2015 )。这些制冷需求项目应尽可能大,目的是通过规模经济降低项目总成本
背景CRISPR-CAS系统通过各种高级基因组编辑工具(例如核酸酶,基础编辑器和转座酶)演变,这些工具可以有效地产生靶向靶诱变[1]。尤其是,基于CRISPR系统开发的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)可以在包括小鼠在内的各种生物体中有效地执行C•g至t•a和a•t至g•c替代基础[2,3] [2,3] [4,5]。最近,也报道了C c cg base Editor(CGBE1),使C可以在人类细胞中进行G基础转移的c转移[6]。然而,由于基因编辑限制(由于同源性定向修复(HDR))导致的基因编辑局限性(HDR),涉及一个或多个核苷酸插入,转化或截断的精确靶向突变仍然具有挑战性。Prime Editor(PE)是一种新的概念基因组编辑工具,包括带有Nickase Cas9(H840A)的融合蛋白和商业的Moloney Moloney鼠白血病病毒逆转录酶(M-MLV RT)。pe由编码所需的编辑序列[7]的Prime编辑指南RNA(PEGRNA)驱动。这种精心设计的基因组编辑系统允许靶向基础转化率的靶向诱变,以及小的插入和插入,而没有双链DNA断裂或供体DNA [7-10]。
PAX H 2 (O) 可以演变为模块化、可扩展且高效的各种尺寸的水蒸馏器和氢气发生器。它可以在工业中用作使用终端的小型到中型水和氢气发生器,例如小型休闲港口或高速公路加氢站 (HRS)。PAX H 2 (O) 还可以用作核心军用级系统,该系统紧凑、坚固、易于操作且可部署,主要针对国防部,用于在偏远基地产生可靠的电力或分布式能源存储和饮用水。PAX H 2 (O) 还可以在公用事业规模的综合体中实施,供市政当局、商业或军事港口使用,或成为农村社区微电网的一部分。PAX Scientific 正在为试点安装和制造寻找战略合作伙伴。