14.2.1 整体风化速率. ... . ... . ... 206 14.2.8 全球海洋环流/“盐水排斥”. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 208
该课程将全面概述冰冻圈在无缝预测和气候系统建模中的复杂作用。冰冻圈影响天气和气候模式、海洋环流以及水文循环。它在气候反馈机制中发挥着关键作用,并在季节至十年的时间尺度上充当水和能量的储存器。将冰冻圈数据和过程纳入气候模型对于提高气候预测和预估的准确性和可靠性至关重要。
地区。缺乏准确信息会导致问题得不到妥善管理。因此,西澳大利亚州政府需要获取有关陆地、水域、大气和沿海条件趋势的全面信息,以履行其环境责任。在陆地上,有证据表明,人们越来越多地使用卫星遥感来提供这些信息。在广阔的海洋上,有证据表明,海洋科学家利用卫星遥感进行水深测量、海洋栖息地测绘、河口水质、海洋环流和热结构,渔业也将其用于渔业作业。为了继续在西澳大利亚州深度风化的风化层下发现新的世界级矿床,人们继续开发新的航空地球物理和卫星遥感勘探技术。
区域。缺乏准确的信息会导致问题管理不善。因此,西澳大利亚州政府需要获得有关陆地、水域、大气和沿海条件趋势的全面信息,以履行其环境责任。在陆地上,有证据表明,卫星遥感技术的应用越来越广泛,可以提供此类信息。在广阔的海洋上,有证据表明,海洋科学家利用卫星遥感技术进行水深测量、海洋栖息地测绘、河口水质、海洋环流和热结构,渔业也利用卫星遥感技术进行渔业作业。为了继续在西澳大利亚州风化程度深的风化层下发现新的世界级矿床,新的航空地球物理和卫星遥感勘探技术正在不断开发中。
最早的船只肯定是由人力推动的,但很明显,风具有重要的夹带作用,风帆的起源是风向越大,推力就越大。有证据表明,公元前 5000 年,中东就出现了帆船和木桨,公元前 3000 年,在古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
裂变反应堆,通常是压水式(PWR),总是通过蒸汽涡轮机(它们类似于外燃机)。第一艘船肯定是由手工推动的,但很明显,风具有重要的夹带作用,并且锋面越大,推力就越大,这就是帆的起源。有证据表明,中东早在公元前 5000 年就出现了帆船和木桨,而在公元前 3000 年的古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
拖曳船上和系泊观测表明,内部重力波越过帕劳北部热带西太平洋海域海面以下 1000 米的高大超临界海底山脊。背风波或地形弗劳德数 Nh 0 / U 0(其中 N 为浮力频率,h 0 为山脊高度,U 0 为远场速度)介于 25 和 140 之间。波浪是由潮汐和低频流叠加产生的,因此具有两个不同的能量源,组合振幅高达 0.2 ms 2 1 。波浪的局部破碎导致湍流动能耗散率增强,在靠近地形的山脊背风处达到 10 26 W kg 2 1 以上。湍流观测显示大潮和小潮条件形成鲜明对比。大潮期间,潮汐流占主导地位,湍流在海脊两侧分布大致相等。小潮期间,平均流占主导地位,相对于平均流,湍流主要出现在海脊下游一侧。海脊对水流施加的阻力估计为 O (10 4 ) N m 2 1(每次穿越海脊时),以及相关的功率损失,为低频海洋环流和潮汐流提供了能量吸收。
摘要 自动气象学 - 冰 - 地球物理观测系统 3 (AMIGOS-3) 是一个多传感器冰上海洋系泊和天气、摄像机和精密 GPS 测量站,由 Python 脚本控制。该站设计为部署在极地浮冰上,无人值守运行长达数年。海洋系泊传感器(Seabird MicroCAT 和 Nortek Aquadopp)记录电导率、温度和深度(CTD;以 10 分钟为间隔报告)以及流速(每小时报告一次)。Silixa XT 光纤分布式温度传感 (DTS) 系统通过冰和海洋柱提供温度曲线时间序列,节奏为 6/天到 1/周,具体取决于可用的站点功率。站点数据的子集由铱调制解调器遥测。双向通信使用单脉冲数据和文件传输协议,有助于站点数据收集更改和电源管理。电源由太阳能电池板和密封铅酸电池系统提供。 2020 年 1 月,思韦茨东部冰架 (TEIS) 安装了两套 AMIGOS-3 系统,可提供持续到 2022 年的数据。我们讨论了该系统的组成部分,并介绍了几组数据集,总结了观测到的气候、冰和海洋状况。关键词:仪器仪表、冰川学、实地观测、自动化、气候变化 1 简介 全年监测环境或地球物理系统是了解其演变过程的关键部分,而确定表征对变化(例如气候变化)的反应的事件则有助于更好地预测系统将如何演变。由于极地冬季环境带来的挑战,建立长期自动监测对于极地地区尤其困难。尽管自从早期发表有关类似站点的文章(Scambos 等人,2013 年)以来,已经开发出了各种各样的用于极地工作的自主观测系统,但迄今为止的大多数自动化系统都是针对特定的主要测量(例如地震活动、冰或岩石运动、天气监测或海洋状态)。这里我们描述了一个系统,该系统旨在同时观察多个环境和地球物理参数,观察区域内正在发生复杂且相互关联的变化。冰面或冰底快速融化的区域、异常的冰架或冰川动态或自由漂移的冰山都是这种多传感器多年观测系统的潜在场所。连续数年收集的气候-冰-海洋观测数据极大地促进了对气候(或天气)、海洋环流、冰损失和冰川加速之间局部尺度相互作用的理解和建模。自动气象学-冰-地球物理-观测系统-3(以下简称“AMIGOS-3”)站已经为多项已发表的研究做出了贡献,这些研究涉及气候、海洋、以及冰架上的冰川过程(Lee 等人,2019 年;Wåhlin 等人,2021 年;Alley 等人,2021 年;Wild 等人,2021 年;2022 年;Dotto 等人,2022 年;Maclennan 等人,2023 年)。