基因组编辑工具广泛安全应用的关键是将核糖核蛋白 (RNP) 的多种成分安全有效地递送到单细胞中,但这仍是其临床应用的生物障碍。为了解决这个问题,设计了一种基于生物相容性海绵状二氧化硅纳米结构 (SN) 的强大 RNP 递送平台,用于储存和直接递送治疗性 RNP,包括 Cas9 核酸酶 RNP (Cas9-RNP) 和碱基编辑器 RNP (BE-RNP)。与基于脂质的方法等商业化材料相比,通过靶向各种细胞和基因,可获得高达 50 倍的基因删除和 10 倍的碱基替换效率,且脱靶效率低。特别是,通过体内实体瘤模型中的静脉注射和小鼠眼中视网膜下注射的基于 SN 的递送成功诱导基因校正。此外,由于其毒性低、生物降解性高,SN 对器官细胞功能的影响微乎其微。由于工程化的 SN 可以克服与治疗性 RNP 应用相关的实际挑战,因此人们强烈期望该平台能够成为模块化 RNP 递送系统,从而促进体内基因删除和编辑。
摘要:特定DNA靶标的分子识别不仅对于开发新药,法医研究和医学诊断,而且对清真状态的身份验证也是必不可少的。清真食品是根据伊斯兰伊斯兰教法制定的,同时也是卫生的。食品安全在确定清真食品中起着至关重要的作用,例如有益健康(安全,清洁,营养和优质食品),除了对穆斯林清真食品的要求进行的Syariah调节。因此,食品身份验证是确保符合宗教信仰的优质食品的越来越多的关注和组成部分。此外,诸如牛海绵状脑病和H5N1病毒之类的“人畜共患威胁”极大地加剧了食物对人类健康的安全需求。穆斯林或非穆斯林消费者将通过预防欺诈性混合成分和微生物威胁来保护其权利时从购买清真食品中受益。基于DNA的生物标志物可以识别不同类型的动物或微生物物种之间的区别。对特定DNA靶标的检测导致了各种不同平台的发展,例如聚合酶链反应,分子荧光团和基于纳米颗粒的测定法。本评论论文旨在描述基于DNA的平台,以保护消费者防止食品欺诈并确保安全清真食品的权利。
从 ATP 开始 http://www.biologyinmotion.com/atp/index.html 1a. 能量是如何从食物分子转化为肌肉分子的? 1b. ATP 类似于什么物体? 1c. 那么,当你吃东西时,你真正补充的是什么? 2a. 按照指示拖动食物分子。发生了什么? 2b. 按照指示将“p”拖到能量转移箭头。ATP 发生了什么?立方体和球发生了什么? 儿童生物学 - 光合作用 http://www.biology4kids.com/files/plants_photosynthesis.html 光是什么能量?植物吸收哪些波长?你看到什么颜色? 叶绿素有哪四种类型?光反应中会发生什么?光独立反应(卡尔文循环)中会发生什么? 忙碌的叶子 http://www.ftexploring.com/photosyn/chloroplast.html 叶子中的叶绿体位于哪里?栅栏状叶肉细胞和海绵状薄壁组织叶肉细胞之间的区别是什么?描述类囊体:描述基粒:光反应在叶绿体的什么地方发生?光独立反应在叶绿体的什么地方发生?儿童生物学 – 呼吸(线粒体)http://www.biology4kids.com/files/cell_mito.html 每个细胞的线粒体数量取决于什么?线粒体的内膜叫什么?这里发生了什么?褶皱增加表面积有什么好处?线粒体内的液体区域叫什么?
Aron Cohen-Gadol,医学博士,MSC,是USC神经外科系凯克医学院的创新教授兼副主席。Cohen博士专门研究复杂的脑和脊柱肿瘤,以及动静脉和海绵状畸形,半径痉挛和三叉神经痛。科恩博士在南加州大学凯克医学院获得医学学位,并在明尼苏达州罗切斯特的梅奥诊所完成了居住。他还完成了两种亚专业的奖学金培训,即癫痫手术(耶鲁大学)和颅底/脑血管外科(阿肯色大学)。Cohen博士拥有Mayo研究生院的临床研究硕士学位,并获得了Kelley商学院的MBA学位。 2006年,科恩博士加入了印第安纳大学医学院神经外科系,他曾担任神经外科教授兼神经外科肿瘤学/脑肿瘤手术主任。Cohen博士拥有Mayo研究生院的临床研究硕士学位,并获得了Kelley商学院的MBA学位。2006年,科恩博士加入了印第安纳大学医学院神经外科系,他曾担任神经外科教授兼神经外科肿瘤学/脑肿瘤手术主任。
3D冷冻打印(3DFP)将按需滴落(DOD)喷墨打印与冷冻铸造相结合,以制造具有定制几何形状的轻质多功能气凝胶。冷冻铸造是一种高效且易于实施的方法,能够为许多不同的应用制造多孔海绵状结构。该过程通过控制制造条件和冷冻动力学来定制最终产品的微观结构(即孔隙形貌、排列、平均尺寸分布等)。它与DOD打印的结合提供了设计宏观结构的能力,而无需依赖模具,正如报道的由石墨烯、银纳米线和其他纳米复合材料制成的3D冷冻打印气凝胶一样。在本文中,我们使用市售的胶体二氧化硅墨水进行了原位X射线成像,以了解3DFP中的内部过程动态。我们研究了具有以下层次结构的3DFP过程:首先,单个液滴;然后,从液滴聚结中获得均匀的线条;最后,逐层沉积三条连续的线条。借助 X 射线成像,通过观察印刷线尖端后的冻结前沿内部,现场显示了材料沉积和冻结速率之间的平衡的重要性。通过观察到的从下层到上层的冰晶,还显示了基板温度对消除不良界面边界的影响。
缩写:Brbns¼BlueRubber Bleb Nevus综合征; CCM¼大脑海绵状畸形; CMMRD¼宪法不匹配修复定义综合征; CVMS¼大脑静脉静脉元素综合征; DVA¼发育性静脉异常; wmh¼白质高强度d evelopmental静脉异常(DVA)是跨载体静脉的极端变化,该静脉由radial静脉组成,该静脉组成的髓质静脉组成,类似于“ Medusa头”,类似于“收集器”的静脉,它最终会流入深层或表面的粘膜系统中。dVA是大脑中慢流静脉畸形的最常见形式,估计发生率为2.6%6.4%,绝大多数是无症状的。1在组织学上,DVA由散布在白色垫料中的扩张的静脉通道组成,在静脉结构和排水模式中具有简单或复杂的变化。2 DVA代表了效率较低的VE液路途径,该途径取决于一个或几个收集器静脉,随着时间的推移,暴露于较高的静脉压可能会导致血管壁增厚和微血管透水化的血管重塑。2来自队列研究和病例的证据表明,与有症状的DVA有关的各种临床表现。3,4我们对DVA的发病机理进行了全面的综述,并讨论了有症状DVA的成像和管理方法。
摘要 微海绵是一种多孔微球,尺寸从 5 到 300 微米不等,用于聚合物输送系统。它们已被用于生物医学应用,包括靶向药物输送、透皮药物输送、抗癌药物输送和骨替代品。本研究旨在详细研究基于微海绵的药物输送系统的现有趋势和未来前景。当前的研究调查了微海绵输送系统的设计、操作和可能的治疗用途 (MDS)。彻底调查了基于微海绵的配方的治疗潜力以及专利数据。作者讨论了几种生产微海绵的有效方法,包括液液悬浮聚合、准乳液溶剂扩散、水包油包水 (w/o/w) 乳液溶剂扩散、油包油乳液溶剂扩散、冻干法、致孔剂添加法、振动孔口气溶胶发生器法、电流体雾化法和超声辅助微海绵。微海绵可通过促进药物释放来减少不良副作用并提高药物稳定性。亲水性和疏水性药物可装入微海绵并运送到特定目标。与传统分配方法相比,微海绵输送技术具有许多优势。微海绵是一种具有多孔表面的球形海绵状纳米颗粒,可帮助提高药物稳定性。它们可有效改变药物释放,同时减少副作用。
背景:勃起功能障碍(ED)被定义为无法在3个月内始终如一地获得和维护阴茎勃起,以持续进行性交。目前针对勃起功能障碍的治疗方法是临时的,对阴茎组织的内皮或稳态破坏没有永久影响。干细胞分泌组是一种具有活性成分的生物活性物质,即VEGF和NGF,已知可以通过其前血管生成和神经再生/神经营养性能来防止ED。目的:这项研究的目的是分析脐带间充质干细胞(UC-MSC)对海绵状动脉内膜膜厚度(IMT)对严重勃起性功能障碍非响应非振动对西地那非的严重勃起功能障碍患者的影响。方法:研究使用了从4月至2024年5月进行的验证前测试设计。使用超声在脆弱状态下对IMT进行评估,而无需注射勃起剂,在大肠肠内注入UC-MSC的分泌剂后一个月和一个月。结果:符合纳入和排除标准的七名54-65岁患者。干预后,IMT在海绵体右侧的近端和中部有统计学上的显着变化,但海绵体的另一部分没有统计学上的显着变化。结论:主要的IMT变化在统计学上不显着,即在右侧和近端距离距离,但它们在右近端中间方面具有统计学意义。关键字:勃起功能障碍;秘密; intima-Media厚度
自发性脑内出血(ICH)约占中风病例的15%,并且仍然是神经系统发病率和死亡率的相当多的来源。鉴于老年人在老年人中的预期寿命和抗血栓疗法的广泛使用,ICH的发生率预计在未来几年[1,2]。主要ICH是指受损的动脉或小动脉的破裂,是不同类型的脑小血管疾病的最终表现,在大脑出血发生之前的几年内,在临床上进展[3]。尽管主要ICH可能负责80%的非创伤性ICH病例,但临床医生应考虑寻找其他原因(凝结型,血管畸形破裂,海绵状畸形,Moyamoya,Moyamoya,tumor,tumor,tumor,tumor,tumor,cerebral静脉hom虫的剧震(其他),也称为第二届评论。组织病理学观察(通过流行病学,神经影像学和遗传研究证实)证明,主要基础血管疾病根据大脑出血的位置而有所不同,因此,可以将主要ICH分类为两个主要类别:非lobar和Lobar和Lobar [4]。非肉眼ICH起源于深脑结构(基底神经节,丘脑,脑干和深小脑),并且一直与高血压诱导的血管病[5,6]一致。与CAA相关的Lobar ICH和高血压LOBAR ICH之间的区分很复杂,但由于复发和痴呆症的风险而具有预后相关性,在CAA相关的Lobar ICh中,它们都显着高于[9-11]。LOBAR ICH(位于皮质区域或皮质和白质之间的连接处)主要与脑淀粉样血管病(CAA)有关,其中β-淀粉样蛋白在脑膜和内室血管内积累,导致脑部和内部血管的减少,并损害了平稳的细胞,并损害了肌张力的细胞。破裂和流血[7,8]。
1. Erana-Perez Z、Igartua M、Santos-Vizcaino E*、Hernandez RM* (AC) 。差异蛋白质和 mRNA 货物装载到工程化大细胞外囊泡和小细胞外囊泡中揭示了体外和体内试验中的差异。J Control Release 379: 951 (2025) 影响因子:11.467,Q1。2. Las Heras K、Garcia-Orue I、Aguirre JJ、de la Caba K、Guerrero P、Igartua、Edorta Santos-Vizcaino M*、Hernandez RM* (AC) 。载有来自毛囊或脂肪组织的人类间充质基质细胞的大豆蛋白/β-几丁质海绵状支架可促进糖尿病慢性伤口愈合。Biomater Adv 155: 213682 (2023)。影响因子:7.9,第一季度。3. Las Heras K、Royo F、Garcia-Villacrosa C、Igartua M、Santos-Vizcaino、Falcon-Perez JM*、Hernandez RM* (AC)。毛囊来源的间充质基质细胞的细胞外囊泡:分离、表征和治疗慢性伤口愈合的潜力。干细胞研究与治疗 13:147 (2022)。影响因子:5.985,第一季度。4. Gonzalez-Pujana A、Vining KH、Zhang DKY、Santos-Vizcaino E、Igartua M、Hernandez RM (AC)、Mooney DJ (AC)。多功能仿生水凝胶系统可增强间充质基质细胞的免疫调节潜力。生物材料。257:120266 (2020)。如果:10.307,Q1。 5. 拉斯赫拉斯 K、桑托斯-比斯卡诺 E、加里多 T、古铁雷斯 FJ、阿吉雷 JJ、德拉卡巴 K、格雷罗 P、伊加图亚 M、埃尔南德斯 RM(AC)。大豆蛋白和甲壳质海绵状支架:从天然副产品到生物医学应用的细胞输送系统。绿色化学,22:3445-3460(2020)。如果:10.182,Q1。 6. 冈萨雷斯-普亚纳 A、桑托斯-维兹卡伊诺 E、加西亚-埃尔南多 M、埃尔纳兹-埃斯特拉达 B、M. 德潘科博 M、贝尼托-洛佩斯 F、伊加图亚 M、巴萨贝-德斯蒙特 L (AC)、埃尔南德斯 RM (AC)。基于细胞外基质蛋白微阵列的单细胞分辨率生物传感器:整合素分析和细胞-生物材料相互作用的表征。传感器和执行器,B:化学。299:126954 (2019)。影响因子:7.460,第一季度。7. Hernando S、Requejo C、Herran E、Ruiz-Ortega JA、Morera-Herreras T、Lafuente JV、Ugedo L、Gainza E、Pedraz JL、Igartua M (AC)、Hernandez RM (AC)。n-3 多不饱和脂肪酸在帕金森病部分病变模型中的有益作用:神经胶质细胞和 NRf2 调节的作用。神经生物学疾病 121:252-262 (2019)。影响因子:5.332,第一季度。 8. Garcia-Orue I、Santos-Vizcaino E、Etxabide A、Uranga j、Bayat A (AC).、Guerrero P、Igartua M、de la Caba K、Hernandez RM (AC)。用于伤口愈合的仿生明胶和明胶/壳聚糖双层水膜的开发。药剂学。 11(7):314-332(2019)。如果:4.699,Q1。 9. Hernando, S.、Herran, E.、Figueiro-Silva, J.、Pedraz JL、Igartua M.、Carro, E.,