研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。
11。实验模型是用方向支撑30的氢爆炸。ioana tuhut ligia,英格。Andrada Matei,博士。 eng。 Full-Mihai Pascuscu,博士。 eng。 Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Andrada Matei,博士。eng。Full-Mihai Pascuscu,博士。eng。Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Daniel-Gheorore博士。eng。Adrian Simon-Marinica语法语法受支持的促进的铁催化剂,助理。证明。玛丽亚博士马尔可瓦,阿索。证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。火焰助手:理解对Mensans的燃烧,Assoc。证明。 Castle Plant博士。证明。大卫·莱昂(David Leon)证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。证明。 David Bolonio博士...静液压动力传输系统此风力涡轮机,博士学位。英语Dumirescu,博士英语Chirita的Alexander-Polifron博士学习。eng。Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。Maria Carla Carla Popescu 115。证明。 Beyoning博士,协会。证明。 Demidenko Galili博士,协会。证明。 Beryozkina Svelana博士,博士学位。证明。大卫·莱昂(David Leon)芳香族聚合物作为PT颗粒稳定剂的性质对芳族和多氨基底物的液相氢化中的活性和选择性的影响。Prof. Dr. Linda Nikoshvili, Ms. Elena Bakhvalova .......................................... 123 16.调查太阳能发电厂的并行操作的过渡过程和紧急干扰下的网格。Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。 Mukhammadjon Odinabekov ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 烟花生命周期分析:环境影响和改善机会,协助。 David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。Mukhammadjon Odinabekov ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................烟花生命周期分析:环境影响和改善机会,协助。David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................David Bolonio博士,同事。研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................研究员Roberto Paredes教授Isabel Amez博士,协助。Prof. Dr. Blanca Castells ............................................................................................... 139 18.使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................教授Krzysztof Kolodziejczyk,MSC Eng。Jedrzej Minda ..................................................... 149 19.优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................
腐蚀和摩擦学是材料外层上发生的表面过程。修改材料表面而不改变其内部性能是减少工程应用中腐蚀,摩擦和磨损的有效方法。纳米技术的进展允许使用纳米颗粒轻松开发表面保护涂层,以研究其在减少表面化学和物理损害方面的有效性。表面保护改善了性能,并延长了工业机械组件的运行寿命。汽车,航空航天,电气,水电,海水冷凝器和管子以及能源产生行业是这种涂层发现大量使用的许多领域之一。本文分析了不同类型的新创建的纳米结构涂层,包括它们的制造方法,腐蚀特征和摩擦学性能。它提供了有关纳米结构涂层的进度的信息,即带有金属和聚合物矩阵的纳米复合涂料。本评论旨在报告一系列旨在防止纳米复合材料涂料腐蚀的作品。
图 1:a) 印刷电路板 (PCB) 中带有 BGA 连接的表面贴装设备 (SMD) 的图示,b) 扫描电子显微镜 (SEM) 图像显示带有 SAC305 的 BGA 的细节以及使用焊膏安装到组件和 PCB 上的 PCSB 的图示,c) 直径为 750 µ m 的聚苯乙烯芯焊球 (PCSB),d) PCSB 结构的示意图。
本研究旨在评估基于苋菜粉 (AF)、蒙脱石和三种精油(丁香、muña 和 matico)的涂层对延长微加工芒果保质期的效果。将芒果块分为四种不同的处理。T1-对照(未涂层芒果)、T2(0.3% w/v 的丁香)、T3(0.3% w/v 的 muña)和 T4(0.3% w/v 的 matico)。所有处理均含有 0.6% w/v 的苋菜粉和 0.02% w/v 的蒙脱石 (MMT),并在 5°C 下保存 12 天。对每种处理评估了水活度 (Aw)、pH 值、总可溶性固体、酸度、重量损失、颜色、质地和抗菌活性。Matico 处理保持了 pH 值,并且芒果上的酵母和霉菌形成单位数量最低(3.47 log UFC g-1)。在贮藏最后一天,所有涂层处理均比对照组重量损失少,效果良好。马蒂科处理对芒果的保鲜效果更好。
从实验室观测得出的频率(尿酸从下方或参考范围内的基线增加到> ULN。肌酐从基线增加> 50%),而不是粗略的事件报告频率。b,例如,膀胱癌,胃癌,结肠癌出血。c,例如,增加了瘀伤,自发性血肿,出血性核糖的趋势。d,例如结膜,视网膜,眼内出血。e,例如,鼻hemoptysis。f,例如,牙龈出血,直肠出血,胃溃疡出血。g,例如,癫痫病,皮肤出血,Petechiae。h,例如,出血,肌肉出血。i,例如血液,膀胱炎。j,例如阴道出血,出血性诊所,绝经后出血。k,例如,挫伤,创伤性血肿,创伤性出血。l即自发,手术相关或创伤性颅内出血。
微藻对生物燃料和生物产生产生的强大潜力;但是,有效的收获方法仍然是增强微藻产品的经济竞争力的关键挑战。这项研究引入了一种简单的方法,用于制造适合场景的自我清洁微滤膜。微藻溶液通过用ZnO涂层氧化铝底物。使用反应性磁控溅射沉积ZnO层,并通过受控涂层厚度调整膜的功能性能。表面表征证实了均匀的晶体ZnO层的形成。发现Zno涂层膜的太阳光吸收随涂层厚度而变化。膜的水接触角从ZnO涂层后的80°降低至42°,表明亲水性大幅增加。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。 在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。 在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。这些发现突出了Zno涂层的陶瓷膜的潜力,作为可持续微藻收集的具有成本效益的解决方案。
Melissa Richard、Abdulelah Al-Ajaji、Shiwei Ren、Antonino Foti、Jacqueline Tran 等人。通过弯月面引导涂层方法对 π 共轭材料进行大规模图案化。胶体与界面科学进展,2020,275,第102080页。 10.1016/j.cis.2019.102080。 hal-0
钛合金具有极高的强度重量比,可用于多种关键的支持技术。然而,它们在严酷环境中的使用面临着其有限的抗高温氧化性能的挑战。为了解决这个问题,本研究采用金属有机化学气相沉积 (MOCVD) 方法在 Ti6242S 合金表面涂覆致密的非晶态氧化铝 AlzO 3 涂层,涂层成分包括三丙醇铝 ATI 和二甲基铝异丙醇 (DMAI)。等温氧化试验表明,与裸露材料相比,涂层 Ti6242S 试样的质量增益抛物线速率常数降低了两个数量级。DMAI Al 2 O 3 涂层合金在 600 °C 下经过 5000 小时的长时间氧化,重量增加 0.180 mg cm-2,而裸露合金的重量增加 1.143 mg cm-2。在这些条件下,会形成一个界面层,其中包含复杂的 TiiAlo 5 Sn 0 .5)(或 (Ti,Sn)zN) 相。在 50 至 600 °C 之间进行 80 次 1 小时循环氧化,结果显示涂层样品的质量增益为零。最后,在氧化试样的横截面上确定的硬度分布表明涂层合金的氧溶解非常有限。非晶态 AlzO 3 的 MOCVD 涂层具有巨大潜力,可有效、持久地防止 Ti6242S 合金氧化。
本研究首次研究了通过选择性激光熔化 (SLM) 直接在由 SLM 生产的 IN625 基体上生产 NiCrAlY 粘结涂层材料的可行性。通过改变激光功率 (P) 和扫描速度 (v) 进行了典型参数优化。对 15 种不同的 P/v 条件进行了单线扫描轨迹和双层涂层分析。定义了几个标准来选择合适的 SLM 参数。结果表明,底层基体发生了明显的重熔,这是 SLM 制造的典型特征。这导致了中间稀释区的形成,其特征是 IN625 高温合金基体和 NiCrAlY 粘结层之间发生了大量混合,表明冶金结合优异。最佳加工条件为 P = 250 W 和 v = 800 mm/s。它产生了一个致密的 242 μm 厚的粘结层,其中包括一个 36% 的稀释区。 SLM 加工的 <NiCrAlY- IN625> 系统呈现出平滑的显微硬度分布,从粘结层的 275 Hv 略微增加到基材的 305 Hv。在系统中发现相之间的 Al 浓度分布逐渐增加,残余应力水平较低。这表明 SLM 可能是一种有价值的替代制造工艺,用于粘结层系统,从而促进高温应用中的出色附着力。