1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙
Physical Properties 1/2" Values • Thickness .................................................................................................................................................... + or - 10% • Transverse Strength, lbf ..................................................................................................................................12-14 • Tensile Strength Parallel, min, lbf/in 2 ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. •按重量按重量的水分含量,最大,%........................................................................................................................................................................................................................... .........................................................................................................................275 • Deflection at Specified Min.加载,最大,in。在在 ....................................................................................................................................... 90 pieces/unit • 4' x 8' Packaging ....................................................................................................................................... 90 pieces/unit • Compression Strength @ 20% Deformation ...................................................................................................45 psi • Compression Strength @ 10% Deformation ...................................................................................................22 psi
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
氯沙坦钾用于治疗成人以及6-18岁儿童和青少年的高血压(高血压)患者。•在高血压2型糖尿病患者中保护肾脏,具有肾功能受损和蛋白尿≥0.5g≥0.5g的实验室证据(尿液中含有异常蛋白质的疾病)。•治疗慢性心力衰竭的患者使用特定的药物(称为血管紧张素转换 - 酶抑制剂)(ACE抑制剂,用于降低高血压的药物)的治疗不适合您的医生。如果您的心力衰竭已使用ACE抑制剂稳定,则不应切换到劳萨坦。•在高血压和左心室增厚的患者中,已证明氯沙坦钾可降低中风的风险(“生命指示”)。
在您开始服用此药物之前,请仔细阅读所有这些传单,因为它包含了重要的信息。•保留此传单。您可能需要再次阅读。•如果您还有其他问题,请询问您的医生或药剂师。•这种药物仅适合您。不要将其传递给他人。它可能会伤害他们,即使他们的疾病迹象与您的疾病相同。•如果您有任何副作用,请与您的医生或药剂师交谈。这包括此传单中未列出的任何可能的副作用。请参阅第4节。此传单中的内容:1。什么是共同diovan,以及2。在您服用共同diovan 3.如何服用共同diovan 4。可能的副作用5。如何存储共同diovan 6。包装和其他信息的内容1。什么是联合二牛,以及用于共同开发薄膜涂层片剂的含有什么用,其中包含两种活性物质,称为Valsartan和Hydrochlorothiazide。这两种物质都有助于控制高血压(高血压)。•瓦尔萨坦属于一种称为“血管紧张素II受体拮抗剂”的药物,有助于控制高血压。血管紧张素II是体内的一种物质,可导致血管收紧,从而导致血压升高。瓦尔萨坦通过阻止血管紧张素II的作用来起作用。结果,血管松弛,血压降低。氢氯噻嗪增加尿量,这也降低了血压。2。•氢氯噻嗪属于一组称为噻嗪类利尿剂(也称为“水片”)的药物。共同diovan用于治疗高血压,该血压不能仅由单个物质充分控制。高血压增加了心脏和动脉的工作量。如果不进行治疗,它可能会损害大脑,心脏和肾脏的血管,并可能导致中风,心力衰竭或肾衰竭。高血压会增加心脏病发作的风险。降低血压以降低患这些疾病的风险。您需要在服用二线之前需要了解的内容,请勿服用共同辅助:•如果您对瓦尔萨坦,氢氯噻嗪,磺胺酰胺衍生物(与氢氯噻嗪化学上的物质)或其他任何药物(第6节中的其他成分)相关的瓦尔萨丹,磺胺酰胺衍生物(与氢氯噻嗪化学化学相关的物质)。
心血管疾病(CVD)是世界上最常见的疾病之一,具有高致病性和高死亡率的特点(Vong等,2018;Wang等,2022a;Qian等,2021)。CVD的临床治疗主要包括三种方式:药物治疗,这是最广泛的治疗方式,也是CVD治疗的基础;介入治疗,包括射频消融和心脏起搏治疗;外科治疗,包括搭桥治疗和心血管移植(Abdelsayed等,2022;Lunyera等,2023;Krahn等,2018)。血管移植主要用于恢复或建立新的血流通路,以维持或改善组织或器官某个区域的血液循环,例如因创伤或切除导致血管段缺损,或动脉栓塞或淋巴阻塞而需要“搭桥”形成循环系统的情况(Xing et al.,2021;Zhao et al.,2023)。血管移植要求供应血管具有与受体血管相同的外径和足够的长度。移植物也面临供区血液循环受损(缺血或淤滞)等问题。因此,迫切需要高性能的人工血管移植来替代自体血管进行血流重建。目前小口径人工血管(<6 mm)主要用于冠状动脉搭桥术、外周血管搭桥术、血管创伤(缺损≥2 cm)、血液透析的组织血管通路、器官功能恢复等(Asakura等,2019;Wang等,2021;Wu等,2018),但人工血管移植可导致吻合口血栓形成、内皮增生等严重并发症,影响管腔通畅性(Oliveira等,2020;Teebken和Haverich,2002;Zhuang等,2020)。此外,目前的人工血管支架虽然具备一定的力学性能和生物相容性或能提供血管再生所需的生化信号,但在模拟天然血管的结构和功能方面还存在明显的不足,现有的支架往往不能充分模拟天然血管网络的拓扑结构,并会诱导细胞爬行,从而影响血管支架在临床应用中的效果(Liang等,2016;Cheng等,2022)。因此,为提高小口径人工血管的通畅性,通过材料选择、表面改性等提高生物相容性/内皮化/力学性能成为重点研究方向。静电纺丝技术可以制备具有高比表面积和孔隙率的微/纳米纤维,可以模拟细胞外基质,促进细胞黏附、增殖和分化,为细胞提供良好的生长环境。该接收装置的设计可以制备不同直径的管状结构,是制备小直径人工血管支架的理想方法(姚等,2022;郭等,2023;宋等,2023;王等,2022b)。特别是利用该技术制备的血管支架可以负载生物因子,提高血管支架的生物相容性,促进血管快速内皮化。虽然目前的人工血管支架已经具备一定的力学性能、生物相容性或能提供血管再生所需的生化信号,但如何结合现有支架的优势,将生物因子负载于血管内,实现血管再生,是当前血管支架研究的热点。
摘要使用琼脂二聚体扩散方法研究了香料果皮与壳聚糖混合在抑制四种微生物的生长中,抑制四种微生物的生长,抑制四种微生物的生长。发现与壳聚糖混合的石榴果皮的粗提取物有效地抑制了所有测试过的微生物的生长。在另一项研究中,将黄瓜水果(SpeedMax品种)涂有1)壳聚糖,2)与壳聚糖混合的石榴果皮中的粗提取物,并与对照组(浸入水中)进行比较。黄瓜在7°C下储存,并每7天记录每7天的黄瓜的质量归因。通过测量黄瓜水果的体重减轻,成熟和变质来记录实验结果。发现与壳聚糖混合(CHI + PPE,2.59±0.01)混合的粗化石榴果皮提取物涂料对体重损失百分比没有显着影响,与壳聚糖(CHI,2.58±0.01)相比,但与对照组的涂层有显着差异(2.93±0.001)。然而,用粗化石榴果皮提取物与壳聚糖(CHI + PPE)混合的涂料黄瓜倾向于增加成熟的量比壳聚糖和对照组涂层的成熟量更大(p <0.05)。与对照组相比,仅壳壳涂层就无法延迟黄瓜水果的变质。然而,发现涂有粗化石榴果皮提取物与壳聚糖混合的黄瓜水果比用壳聚糖和对照涂层的壳聚糖更宠坏(p <0.05)。关键字:黄瓜,石榴果皮,壳聚糖,涂料
所代表的产品适用于工业耐火材料应用。本数据表中的数值和应用信息仅供参考。给出的数值和信息受正常制造变化的影响,如有更改,恕不另行通知。摩根先进材料 - 热陶瓷不保证也不保证产品的适用性,您应寻求建议以确认产品是否适合与摩根先进材料一起使用。
石油和天然气复合物的开发与提取的碳氢化合物的运输方法的改善密不可分。使用内部光滑涂料是提高运输天然气系统效率的方法之一。这些涂层允许降低气体运输成本,并在附加的内部管道腔免受腐蚀损伤中保护。由于将天然气产量转移到远北的趋势,其负温度非常低,并且在运输的天然气中将较重的碳氢化合物组件的比例增加,因此有必要提出新的技术解决方案,以确保在新条件下主要的天然气管道的有效运行。作者建议研究使用以前尚未用于气管道的荧光塑料涂层的可能性,并被认为是有希望的。本文介绍了对使用的环氧涂层和施加在钢板表面上的有希望的荧光塑料涂层的比较分析。将环氧涂层应用于板的表面,该表面通过沙蓝色清洁,在使用低粘合性能的荧光塑料涂层之前,准备板表面以确保通过初步激光处理和随后的冷磷脂确保牢固的粘合键。在工作过程中,进行了对涂料的物理和机械特征的研究,包括确定正常和负温度下涂层的影响强度,以及通过Erickson方法确定弹性,以及确定弯曲强度,弯曲强度和等效粗糙度的确定。根据研究的结果,与环氧涂层相比,在低温下,荧光塑料涂层具有更大的弹性,弯曲强度和冲击强度。此外,还发现,荧光塑料涂层在等效粗糙度方面不如环氧涂层,这会影响液压抗性的量。因此,这项工作给出了将荧光塑料涂层作为内部光滑涂层的相关性,以确保在负温度的条件下,气管道的效率更高,同时增加了运输气体中较重的碳氢化合物组件的比例。关键词:气管管道,荧光塑料涂层,环氧涂层,平滑涂层,冲击强度,涂层弹性,等效的粗糙度系数。doi:10.17580/cisisr.2024.02.16