虽然消化酶与餐食一起采用以帮助消化食物,但在餐食之间采用Interfase®中的酶,以帮助降解细菌和酵母菌生物膜群落,这是嵌入在保护性外细胞外的聚合物,聚合物,聚合的聚合物的微生物的复杂聚集。生物膜使其很难转移微生物群的平衡。InterFase®已记录了构成生物膜矩阵以及降解细菌和酵母细胞壁结构的裂解多糖的能力。This innovative enzyme formulation provides a synergistic combination of glucoamylase, cellulase, hemicellulase/pectinase, beta-glucanase, protease/peptidase complex with dipepticlyl peptidase-IV (DPP-IV) activity, lysozyme, chitosanase, and Serratia peptidase that targets and disrupts GI bacteria and yeast生物膜。
与现代医学的还原主义方法相比,诸如维帕卡(Vipaka)之类的阿育吠陀概念似乎是深奥的,但两者之间存在着重要的交集。现代药理学通常通过其生物活性成分及其分子机制来解释植物化合物的治疗作用。阿育吠陀智慧提供了一种更全面的观点,它考虑了物质如何在更深的,系统的水平上与身体相互作用。例如,生姜和姜黄的Katu Vipaka可以与它们在消化系统上的兴奋性特性相关,这些特性得到了现代研究的支持,这些研究表明它们对增加胆汁产生的影响,消化酶的分泌以及增强胃肠道运动。同样,Ashwagandha的Madhura Vipaka与它用作减轻压力和适应性草药的使用,现代临床试验证实了其在降低皮质醇水平并提高认知功能的作用。
写道:“在肠道前,一项研究表明,唾液和中肠分泌物中的消化酶不仅提供糖和氨基酸作为居民微生物群的底物,而且还提供了消化生物量。”这意味着宿主(或前肢中的少数微生物,见下文)可能会产生内源性酶以降解聚合物。这是正确的吗?第1.6.1节还问为什么微生物如此糟糕地殖民了千足派的前肢?这是否表明动物编码这些提到的活动,或者表明前肢降解木质纤维素中相对较少的微生物?论文1中提出的遗传能力也是间接证据。因此,千足虫无法消化的木质纤维素的证据尚无定论。19。溶菌酶活动呢?为了访问微生物/真菌生物量,宿主除了上述糖苷水解酶外,可能还需要上调这些酶。
摘要:在这项研究中,根据虚拟筛选和文献选择了12种氟苷糖苷,并通过体外酶活性抑制实验选择了槲皮素作为α-葡萄糖苷酶的最佳选择性抑制剂。其α-葡萄糖苷酶的IC 50值为79.88 µm,其IC 50值对α-淀粉酶> 250 µM。因此,它可以用作新的α-葡萄糖苷酶的新选择性抑制剂。进一步探索了Quercimeritrin对两种淀粉消化酶的选择性抑制机制,并证实了槲皮素具有α-葡萄糖苷酶的结合性强度很强,并通过非质量糖苷酶的结合袋占据了α-葡萄糖酶的结合。随后,动物实验表明槲皮素可以在体内有效控制餐后血糖,其抑制作用与acarbose相同,但没有副作用。因此,我们的结果提供了有关如何使用avone aglycones来有效控制消化率以提高餐后血糖水平的洞察力。
虫害高度依赖富含淀粉的谷物,并严重损害谷物谷物和营养产量。淀粉酶胰蛋白酶抑制剂蛋白降解消化酶α-淀粉酶,该淀粉酶在碳水化合物代谢以及昆虫的生长和发育中起关键作用。这些抑制剂蛋白主要在小麦,玉米和大麦等谷物作物中发现,这些蛋白质是淀粉的丰富来源。由于防御性害虫的机制,淀粉酶胰蛋白酶抑制剂蛋白可能是谷物作物中有害生物管理的重要候选者。它可用于标记辅助植物育种和基因组映射。淀粉酶胰蛋白酶抑制剂蛋白可以预防各种疾病,例如糖尿病,但也会引起小麦过敏,贝克的哮喘和食物过敏。在这篇综述中,我们总结了对淀粉酶胰蛋白酶抑制剂蛋白的鉴定,表征,纯化,抑制机制和各种分析,以控制谷物作物的害虫作为天然防御,并减少人类过敏。
摘要:饮食纤维是一种不能被内源性消化酶消化的物质,但可以被肠道微生物产生的纤维素分解酶消化。过去,饮食中的饮食中被认为是饮食中的抗营养成分,因为它可以通过肠道分泌的内源性酶抵抗消化,并且对产生能量养分的消化产生负面影响。然而,由于其功能性能,对动物的潜在健康受益以及先天的发酵性,近年来引起了人们的关注。有很多关于饮食纤维的研究。证据表明,饮食中的饮食纤维可以通过肠道微生物发酵为猪提供能量,并改善母猪福利,生殖性能,肠道和免疫力。这是饮食纤维组成和分类的简要概述,饮食纤维对生殖性能,肠道微生物和母猪的免疫指数的作用机理和影响。本综述还为在母猪生产中应用饮食纤维的应用提供了科学指导。
[图片来源:胃]胃位于食道和小肠之间。它分泌称为蛋白酶和浓酸的蛋白质消化酶,以帮助食物消化。食物通过平滑的肌肉扭曲通过食道蠕动到达胃。部分消化的食物(Chyme)被转发到小肠。胃癌胃癌,也称为胃癌,是一种从胃开始的癌症。。然后可以形成肿瘤。恶性肿瘤也称为癌症。胃癌不应与腹部可能发生的其他癌症相混淆,例如结肠癌(大肠),肝脏,胰腺或小肠,因为这些癌症可能具有不同的症状,不同的外观和不同的治疗方法。胃癌倾向于多年来缓慢发展。在出现真正的癌症之前,胃内(粘膜)经常发生癌前变化。这些早期变化很少引起症状,并且常常未被发现。从胃的不同部分开始的癌症可能会导致不同的症状,并且往往会产生不同的预后。癌症的位置也会影响治疗方案。
摘要 囊性纤维化是一种遗传性疾病,主要见于高加索人群 [1],但也见于不同种族。囊性纤维化会影响某些器官,尤其是那些具有上皮细胞的器官。囊性纤维化疾病主要影响呼吸道和消化道。[2] 产生粘液的细胞会分泌更粘稠的粘液。这是囊性纤维化疾病的主要影响。虽然这种粘液更粘稠,但它会对细胞周围有粘液层的器官造成问题。[1] 主要发生在肺部,由于粘液更粘稠,由于肺层上粘液过多,个人无法将氧气输送到细胞。这导致患者需要接受治疗以调节血氧水平。胰腺的情况则有所不同。传输胰腺消化酶的小管无法通过,因为较厚的粘液会堵塞管道。[1]相对而言,消化酶无法通过,患者有消化问题,并且大多营养不良。由于这种限制寿命并可能致命的疾病是遗传性的,因此目前尚无明确的治疗方法。然而,随着技术的发展,基因治疗被认为是囊性纤维化患者最有希望的解决方案。囊性纤维化囊性纤维化是一种由基因突变引起的常染色体隐性遗传疾病。这种突变发生在囊性纤维化跨膜传导调节基因(也称为 CFTR)中,该基因位于 7 号染色体上。[3] 此外,这种疾病被认为是白种人中最致命的遗传病。[4] 由于这种疾病是隐性的,所以父母双方必须都患有这种疾病,或者父母双方都必须隐性携带该基因。在这种情况下,后代必须同时拥有两个隐性基因才会患有囊性纤维化疾病。根据突变类型,携带 CFTR 突变基因的患者可能会出现不同的症状。同样,疾病的严重程度或症状在什么年龄出现也不同。当患者的 CFTR 基因中存在两个功能丧失突变时,他们的疾病被称为经典囊性纤维化。在这种情况下,患者表现为鼻窦慢性细菌感染、胰腺消化分泌不足、男性不育和汗液中氯化物浓度过高。[5] 囊性纤维化患者的肺和胰腺中的粘液水平异常。这种粘液会导致器官充血、组织损伤和感染。除了胰腺和肺部,它还会导致汗腺、胆管、男性生殖系统和肠道等器官的疾病。[4]
本研究从 4 种河口多毛类:Capitella capitata、Scalibregma inflatum、Dendronereis aesturiana 和 Namalycastis abiuma 中分离出共 17 种形态不同的肠道相关细菌。用琼脂扩散法评估了分离菌株的益生菌活性,例如蛋白酶、淀粉酶和脂肪酶等消化酶以及对鱼类病原体的抗菌活性。基于其较好的酶促和抗菌活性,选取两株细菌 CMST Poly1 和 CMST Poly2 进行进一步的益生菌研究。根据生化和形态学特征,这两株益生菌菌株均为革兰氏阳性、杆状、不运动、不形成芽孢、同型发酵、缺乏催化酶和明显的蛋白水解活性,并且对多种抗生素敏感。此外,通过 16S rRNA 基因序列分析确认这两株菌株为枯草芽孢杆菌 CMST Poly1 和 Priestia megaterium CMST Poly2。我们的结果表明,枯草芽孢杆菌 CMST Poly1 和 Priestia megaterium CMST Poly2 菌株可作为水产养殖应用中的益生菌菌株使用。
摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。