1.1 目前市面上有些气雾剂产品(例如空气清新剂、缓蚀剂、除臭剂、杀虫剂、润滑剂、泡沫定型剂及雪雾剂等)含有石油气与其他化学品的混合物。石油气经加压后变成液态,然后储存于气雾罐内作为喷射剂使用。市民在保管及使用这些气雾剂产品时,应注意气体安全。 1.2 本指引为在本港出售的载有石油气的气雾罐(下称“气雾罐”)的安全标准提供指引。本指引不适用于以非石油气气体作为喷射剂的气雾罐,例如压缩二氧化碳、二甲醚等。 1.3 本指引并不包括有关气雾罐内除石油气以外的其他内容物的安全规定。供应商必须确保遵守所有其他相关安全标准及其他本地法定要求。1.4 本指引亦可在 www.emsd.gov.hk 查阅。
图 1。项目位置图 图 2。LNG 终端站场地平面图 图 3。项目场地 USGS 地形图 图 4。模拟场地布局 图 5。CO 1 小时显著性分析 图 6。CO 8 小时显著性分析 图 7。NO 2 1 小时显著性分析 图 8。NO 2 年显著性分析 图 9。SO 2 1 小时显著性分析 图 10。SO 2 3 小时显著性分析 图 11。SO 2 24 小时显著性分析图12.SO 2 年度显著性分析图 13.PM 10 24 小时显著性分析图 14.PM 10 年度显著性分析图 15.PM 2.5 24 小时显著性分析图 16.PM 2.5 年度显著性分析图 17.NO 2 1 小时 NAAQS 分析图 18.NO 2 年度 NAAQS 分析图 19.SO 2 1 小时 NAAQS 分析图 20.PM 2.5 24 小时 NAAQS 分析图 21.PM 2.5 年度 NAAQS分析图 22。PM 10 24 小时 NAAQS 分析图 23。NO 2 年度增量分析图 24。PM 2.5 24 小时增量分析图 25。PM 2.5 年度增量分析图 26。PM 10 24 小时增量分析图 27。PM 10 年度增量分析
9 JERA 是东京电力公司 (TEPCO) 和中部电力各占 50% 股份的合资企业。JERA 成立于 2015 年,整合了两家公司的燃料和火电资产,是日本最大的发电公司。JERA。关于我们。2024。10 目的地条款指定根据销售购买协议 (SPA) 运输货物的特定液化天然气接收终端,这实际上阻止了买家在其他设施卸货。这可以防止他们利用货物转移的套利机会,并要求液化天然气在卸下后重新装载,然后才能转售给其他方。这些目的地限制最初是由液化天然气出口商设计的,以防止他们自己的客户争夺潜在买家。目的地限制和灵活性将在第三部分进一步讨论。海上能源法。目的地条款:注定要被砍掉?2019。
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
不列颠哥伦比亚省政府和业界一直声称,扩大不列颠哥伦比亚省的液化天然气出口可以成为解决气候问题的方案,因为这样可以用燃烧更清洁的天然气取代亚洲市场上的肮脏煤炭。2023 年,化石燃料基础设施扩张的论据需要严格审查。此外,从井口到燃烧器尖端的全生命周期液化天然气分析并不支持从煤炭转换为天然气会带来显著收益的说法。
报告编号:C 809与:瑞典国家道路和运输研究所(VTI)和瑞典海事技术论坛(SMTF)作者:TorbjörnJohansson,Carl Andersson,Anders Genell,Anders Genell,Julia Winroth和Fredrik Von Elern Elern
抽象增加了水溶性药物不良的渗透性,对口服药物递送构成了重大挑战。常规的溶解技术,例如固体分散和环脱纤维化剂,虽然能够改善药物溶解,但在随后的配方处理中遭受了极大的困境。一种新颖的“粉末溶液技术”,液化技术,在处理药物溶解和口服“问题”药物的制定方面已成为最前沿的。液化技术涉及将液体药物吸附到合适的载体和涂料上,然后转换为自由流动,看起来干燥和可压缩粉末。在液化系统中,该药物分散在几乎分子状态下,这极大地有助于药物溶解和吸收。本评论旨在介绍液化技术的基础知识,并更新液化处理的概念以扩大其应用程序。详细讨论了现代药物发现的趋势,药物溶解方法,液化技术在配方创新中的应用,配方组成和液化系统的设计。特别强调了液化技术溶解不良的液化和生物利用度的应用。积累的证据表明,液化技术具有改善口服输送和促进不溶性药物的二次发展的巨大潜力。
本协会制定并发布船舶分类规则,其中包含船体结构和基本工程系统的最低要求。本协会在船舶设计、建造和运营期间,经国家主管部门授权,验证是否符合分类要求和适用的国际法规。运输和装卸设备(包括液化天然气的货物围护系统)应受第 7 篇第 5 章的管辖。
代表液体流,而不连续的是指纯气体流。...................................................... ……………………………… .... ....35