发生火灾时应采取的补救措施 a. 必须始终严格遵守以下预防措施: 1. 安装前用干净的三色乙烯 (TCE) /四氯化碳 (CTC) 彻底清洗所有氧气配件、阀门和零件。切勿将汽油、煤油或其他碳氢化合物溶剂用于此目的。用于氧气服务的所有管道、管线阀门等必须是认可的类型,并且在投入使用前必须彻底除油并用干净无油的压缩空气或氮气吹净。 2. 禁止在工厂进气口附近释放乙炔或其他易燃气体。液氧中乙炔浓度超过百万分之五时可能会发生剧烈爆炸。必须严格监督以将污染的可能性降至最低。 3. 工厂和工厂附近必须始终保持清洁,不得有任何异物。工厂周围任何漏油情况必须立即纠正。必须立即用抹布和四氯化碳清理漏油。4. 请勿用油或任何其他物质润滑氧气阀门、调节器、仪表或配件。5. 确保从空气分离器夹套上拆下的绝缘层没有被油或其他易燃材料污染。对空气分离装置设备进行维护的人员必须穿着干净的工作服,手和工具必须没有油。这可确保绝缘层和设备
封面照片:艺术气息十足的 F-1 发动机喷射板,这款发动机是阿波罗任务中土星五号火箭的主要动力,除其他升力外,还为它提供动力。液体燃料和液氧会从喷射板的孔中喷出,就像花园软管头喷出的水一样,但压力巨大。这台特殊的 F-1 发动机在阿拉巴马州亨茨维尔的美国太空和火箭中心展出。1958 年 8 月,即 ARPA(后来更名为 DARPA)成立仅六个月后,该机构批准了亨茨维尔陆军弹道导弹局的 Wernher von Braun 及其研究团队提出的设计和建造大型重型火箭运载器的提案。为了在第一阶段快速且廉价地实现巨大推力,ARPA 建议采用一组现有火箭发动机的设计,即 Rocketdyne 在 20 世纪 50 年代中期开发的强大 F-1。加速土星助推器成功开发的另一个原因是,上级依赖于早期为 ARPA 支持的 CENTAUR 飞行器开发的液氢技术。随着 DARPA 进入第七个十年,该机构仍然处于火箭设计的前沿,目前专注于快速、低调、低成本地将资产送入轨道的挑战。照片由 Lee Hutchinson 拍摄
高光谱成像提供高维空间光谱信息,揭示了内在物质特征1 - 5。在这里,我们报告了具有高空间和时间分辨率的片上计算高光谱成像框架。通过在图像传感器芯片上整合不同的宽带调制材料,目标光谱信息是非均匀且本质上与每个像素上与明亮吞吐量的。使用智能重建算法,可以从每个帧中恢复多通道图像,从而实现实时高光谱成像。在这样的框架之后,我们第一次使用光刻志上制造了宽带Vis-nir(400-1700 nm)高光谱成像传感器,平均光通量为74.8%和96个波长通道。证明的分辨率为124 fps的1,024×1,024像素。我们证明了其广泛的应用,包括用于智能农业,血液氧和水质监测的叶绿素和糖定量,用于人类健康,Tex-Tile分类和工业自动化的苹果瘀伤检测以及用于天文学的远程月球检测。集成的高压图像传感器仅称重数十克,并且可以在各种资源有限的平台上组装,也可以配备了OB-the Shelf Optical Systems。该技术改变了高维的挑战
本文介绍了全球范围内混合火箭发动机在太空运输中的应用发展现状。介绍了历史根源,并分析了在几十年内人们对混合技术兴趣不大之后重新审视该技术的原因。本文讨论了探空火箭、可重复使用亚轨道系统和运载火箭的现代发展,特别关注推进剂技术。各种推进剂组合包括使用液氧、过氧化氢、一氧化二氮和一氧化二氮-氧气混合物作为氧化剂。本文考虑了不同的燃料,并考虑了性能以及可获得的回归率等。本文介绍并分析了使用不同推进剂组合的车辆的初步计算结果。并与全球范围内提出的混合火箭配置进行了比较。本文指出了尚未解决的问题和几个未知数,包括混合火箭发动机的可扩展性问题、大型发动机的燃烧不稳定性、金属化燃料的燃烧效率、推进剂的体积性能以及车轮颗粒几何形状下的燃料残留质量。本文讨论了新型太空混合运载火箭(虽然通常级间可重复使用性有限)是否在成本上与其他化学火箭推进系统开发相比具有竞争力。本文总结了未来潜在的进步和技术机遇。进行这项研究的主要目的是对全球现有或目前正在开发的不同混合推进技术进行比较。
尽管存在使用神经反馈的几项情绪调节研究,但仍评估了少数区域之间的相互作用,因此,需要进一步研究以了解与情绪调节有关的大脑区域的相互作用。我们通过自传记忆通过自传记忆来上调积极的情绪,通过同时实现了功能性磁共振成像(fMRI)来实现脑电图(EEG)神经反馈。然后,对整个大脑区域进行了探索性分析,以了解神经反馈对大脑活动的影响以及与情绪调节有关的整个大脑区域的相互作用。对照组的参与者和实验组的参与者分别观看自传记忆的正面图像,并分别获得假或真实的(基于α不对称)的eeg神经反馈。提出的多模式方法量化了EEG神经反馈在变化EEGα功率,fMRI血液氧合水平依赖水平(BOLD)活性(枕骨,顶叶和边缘区域的活性(BOLD)活性(BOLD)活性(高达1.9%)以及实验中/额叶中的/limbic ins ins inter-preetal ins inter-pretiels组之间的影响。通过比较实验条件(上调和视图块)之间的大脑功能连通性,并通过比较实验组和对照组的大脑连通性来确定新的连通性联系。心理测量评估确定了神经反馈实验组中正情绪状态和负面情绪状态的显着变化。基于对情绪区域所有大脑区域之间活动和连通性的探索性分析,我们发现
同时脑电图(EEG)和功能性磁共振成像(fMRI)是一种互补技术,被理想地将其作为与头皮EEG Fifings相关的大脑中精确定位区域的工具。经典方法评估了fMRI的血液氧合变化在时间上与电皮质事件相关,从而从fMRI的高空间分辨率和脑电图的高时间分辨率中获得了优势。EEG-FMRI的应用包括基本认知功能及其动力学的研究,决策,睡眠,静止状态网络,神经反馈,情感重点本地化,尤其是癫痫病。最近的研究说明了脑电图对神经网络定位的价值,以及该技术作为识别涉及不同任务和条件涉及的大脑区域的补充工具的应用正在增加。例如,由于单模块技术并未显示出与反馈刺激有关的区域的完全一致的大脑激活,因此最近的研究采用了EEG-FMRI融合技术来揭示这种情况下的大脑神经活动。该研究主题的目的是扩大EEG-FMRI的应用,并将方法从预处理到事件检测和分析。我们旨在提高对认知过程与静止状态网络之间关系的理解,认知过程的动态以及机器学习方法在脑电图或fMRI数据上的应用以及发现之间的关系。使用EEG-FMRI的认知神经科学中的方法和应用旨在强调用于研究有关认知涉及的心理过程的基本问题的最新实验技术和方法。
神经元通过神经血管耦合(NVC)调节血管的活性。对NVC的详细理解对于了解大脑功能成像技术的数据至关重要。NVC的许多方面均已通过实验和使用数学模型进行了研究。已经在啮齿动物,灵长类动物或人类中测量和建模了血液体积和流量,局部场电位(LFP),血红蛋白水平,血液氧合水平依赖性反应(BOLD)和光遗传学的各种组合。ever,这些数据尚未将其汇总到统一的定量模型中。我们现在提出了一个数学模型,该模型描述了所有此类数据类型,并保留了实验之间的机制行为。例如,从小鼠的光遗传学和显微镜数据的建模,我们学习细胞特异性贡献;血管反应中的第一个快速扩张是由无互操神经元引起的,较长刺激过程中扩张的主要部分是由金字塔神经元引起的,峰后峰值下声不足是由NPY-神经元引起的。这些见解在随后的所有分析中被翻译和保存,以及有关血红蛋白动力学和LFP/BOLD-INTERPLAY的其他见解,这些见解是从啮齿动物和灵长类动物的其他实验中获得的。该模型可以预测不用于培训的独立验证数据。通过将数据与来自不同物种的互补信息结合在一起,我们俩都更好地了解每个数据集,并为人类数据的新型综合分析提供了基础。
HyImpulse 及其合作伙伴 Adamant Composites 在开创性的无内衬 CFRP 氧气罐的静水爆破试验中取得成功 [2023 年 2 月,德国科赫尔河畔诺伊恩施塔特] – HyImpulse Technologies 与希腊先进复合材料制造商 Adamant Composites 合作,自豪地宣布成功完成了开创性的无内衬碳纤维增强聚合物 (CFRP) 液氧 (LOX) 罐的静水爆破试验。这标志着 HyImpulse 轨道小型发射器 SL1 开发的一个重要里程碑。静水爆破试验是任何压力容器开发的关键步骤,用于确保罐在极端条件下的安全性和可靠性。该测试使罐承受的压力远远超出正常运行时预期的压力,以识别任何潜在的弱点或故障点。无内衬 CFRP LOX 罐以优异的成绩通过了测试,证明了其能够承受远远超出其预期用途极限的压力。这是 HyImpulse 和 Adamant Composites 团队取得的一项重大成就,因为无内衬 CFRP 储罐在欧洲的太空应用中相对较新,尚未经过广泛测试。“我们对这次测试的结果感到非常兴奋,”HyImpulse 首席执行官 Mario Kobald 表示。“在我们的 LOX 储罐中使用无内衬 CFRP 显著提高了我们的性能,并减轻了重量和成本。这次成功的测试使我们距离将这项创新技术应用于 SL1 并彻底改变航天发射行业又近了一步。”“我们相信,彻底改变进入太空的方式需要彻底改变复合材料结构的设计和制造方式,”Adamant Composites 首席执行官 Antonios Vavouliotis 表示。“独特的全复合材料设计可节省 30% 的质量,而机器人启发的生产过程可将周期时间缩短 50%,成本降低 25%。”
本文件中使用的首字母缩略词和缩写定义如下。 AC-10 Aerocube-10 ACCESS 可直立空间结构装配概念 ACME 带移动炮位增材制造 AFRL 空军研究实验室 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 改进型一次性运载火箭 ELSA-d Astroscale 演示报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS 加快空间站实验处理 FARE 流体采集和补给实验 FDM 熔融沉积成型 FREND 前端机器人启用近期演示 GaLORE 从风化层电解中获取的气态月氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAM 空间维修、组装和制造 ISFR 现场制造和维修 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 ISSI 智能空间系统接口 JEM 日本实验模块 JEM-RMS 日本实验模块遥控操作系统 LANCE 用于施工和挖掘的月球附着节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧 LSMS 轻型表面操纵系统 MAMBA 金属先进制造 机器人辅助组装 MER 火星探测探测器
功能磁共振成像(fMRI)是绘制人脑功能的最重要方法之一,但仅对潜在的神经活动进行了间接度量。最近的发现表明,fMRI血液氧合水平依赖性(粗体)信号的神经生理学相关性可能在区域特异性。我们检查了海马和新皮层中fMRI BOLD信号的神经生理学相关性,其中神经结构的差异可能导致各个信号之间的关系不同。用深度电极植入的15例人类神经外科患者(10名雌性,5名男性)进行了无语言召回任务,而电生理活性则同时记录在海马和新皮层部位。同一患者随后在fMRI会议上进行了类似的任务版本。随后的记忆效应(SME)是针对这两种成像模态的计算,作为编码相关的大脑活动的模式,可预测以后的自由回忆。线性混合效应建模表明,大胆和伽马频段中小企业之间的关系通过记录位置的LOBAR位置进行了调节。粗体和高伽玛(70 - 150 Hz)中小型企业在许多新皮层中都具有协变量。这种关系在海马中逆转,在海马中,大胆和高伽玛中小型中小型中小型企业之间存在负相关。我们还观察到内侧颞叶中的大胆和低伽马(30 - 70 Hz)中小型脉冲之间存在负相关关系。这些结果表明,海马中BOLD信号的神经生理学相反与新皮层中观察到的神经生理相反。