冰芯测量结果显示出多种大气中的CO 2变化(减少,减少或保持稳定),呈千禧一代北大西洋寒冷时期,称为Stadials。这些对比趋势的原因仍然难以捉摸。碳富含深海的通风可能会深刻影响大气中的CO 2,但其千禧一代的历史受到限制。在这里,我们提出了过去150,000年的良好高分辨率深度大西洋酸度记录,这显示了迄今为止五种迄今未发现的体型海洋通风模式,对深海碳存储和相关大气CO 2变化产生了不同的后果。我们的数据提供了观察性证据,以表明在大气CO 2显着上升时,强烈且通常广泛的南部海洋通风释放了大量的深海碳。相比之下,其他体积的特征是通过南大西洋和北大西洋的通风弱,促进了呼吸碳的积累,因此减少或逆转了深海碳损失,导致大气中CO 2的升高甚至下降。我们的发现表明,深海碳储存和大气CO 2的千禧年尺度变化是通过两个极性区域的相互作用的多种海洋通风模式调节的,而不是单独的南方海洋,这对于对过去和未来的碳循环调节对气候变化至关重要。
化学分配了磷及其最多的氧化形式,无机磷酸盐,在生命的所有领域推动生物能和代谢方面的独特作用,可能是因为它起源于益生元地球。对于植物而言,获得重要的矿物营养物会深刻影响生长,发展和活力,从而限制了自然生态系统中净初级生产力和现代农业作物产量。与其他主要的生物元素不同,磷酸盐在地壳中的低丰度和不均匀分布是由于磷宇宙化学和地球化学的特殊性所致。在这里,我们追踪元素的化学演化,地球化学磷循环及其在地球历史上的加速度,直到现在(人类世)以及陆地植物的演变和上升。我们重点介绍了磷酸动员和获取的化学和生物学过程,首先在细菌中进化,在真菌和藻类中精炼,并在土地植物定殖过程中扩展为强大的磷酸盐培养策略。此外,我们回顾了从细菌到陆生植物的遗传和分子网络的演变,它们监测细胞内和细胞外磷酸盐的可用性,并协调适当的反应和调整,以调整磷酸盐供应的波动。最后,我们讨论了现代的全球磷循环,这些周期被人类活动和未来的挑战危险。本文是主题问题“植物代谢的进化和多样性”的一部分。
教育中的人工智能 (AIEd) 已经发展了一段时间,2022 年 12 月底 GPT 聊天的出现为教育实践开辟了新的机遇、潜力和挑战。计算技术和信息处理的进步导致人工智能 (AI) 在教育领域的广泛应用。在过去的 20 年里,关于 AIED 的论文数量一直在稳步增加,从 2015 年到现在急剧上升。在其短暂的历史中,AIEd 经历了几次范式转变。本研究旨在通过研究来自 Google Scholar、PubMed、CrossRef、OpenAlex 和 Scopus 的元数据的出版趋势来探索 AI 在教育中的应用。人工智能 (AI) 技术的发展和应用,特别是在教育领域,极大地支持了教育改革,并深刻影响了学习者的学习方式。教育中的人工智能 (AIED) 可以帮助教师准备教材、演示媒体和准确的评估。此外,AIED 还能帮助学生因应差异调整传统学习方式,实现符合学生学习需求的智能教学。教师对教育技术 (ET) 的正面认知,有利于积极运用 AI 技术辅助教学,进而提升教学效果。整体而言,AIEd 的发展趋势已成功赋能学习者个性化,让学习者具备批判性思维和创新性思维,促进个性化学习。
众所周知,农业和森林生态系统充当陆地生态系统中的重要碳。了解面对气候变化时生态系统碳周期的基本过程和机制对于量化陆地生态系统的碳汇至关重要。生态系统碳循环不能与水和氮循环分开,因此不能在农业和森林生态系统中对气候变化的碳水氮过程的反应和适应性进行进一步研究。该研究主题发表了10篇论文,以获得对农业和森林生态系统中碳 - 水氮相互作用的基本机制和过程的新见解,以响应气候变化。垃圾分解是一个关键的生物地球化学过程,它对森林和草原生态系统中的碳和氮循环深刻影响。气候因素可以显着影响垃圾分解速率,碳固换以及CO 2和N 2 O.CO 2和N 2 O.的温室气体的排放。对37个发表研究的351个样本进行了全面的元分析,以探讨太阳辐射和降水对垃圾分解和CO 2发射的互动效应。他们发现太阳辐射显着增加了垃圾分解,这取决于降水状态。同时,Li等人。通过对青海藏高原上的长期操纵变暖实验,研究了变暖和开垦对N 2 O发射的影响。他们的结果表明,通过增强土壤硝化和相关的
引言当前一代的学生需要面对一个非常有竞争力的社会,因此会承受很大的压力。压力是生活中不可避免的方面,在生活的各个阶段都以各种方式影响个人。研究表明,与其他学生相比,医学生的压力很大[1]。无法应对压力会导致抑郁并触发自杀念头。汉斯·塞利(Hans Selye)将压力分为痛苦和困扰。eustress是对压力源的积极反应,对健康具有有益影响,而困扰是负面的,可能导致认知下降[2]。由于压力,临床实践和医学本科生的教室的表现都在下降。学生由于对自己的未来感到不安而面临学术压力和焦虑。,他们在社会,情感和身体方面承受着重大压力的负担,这会受到家庭挑战的加剧,这可能会对他们的认知产生重大影响。认知被定义为思考,学习,记住,意识到周围环境和使用判断的心理过程。压力不仅会影响身体,而且会深刻影响个人的情绪,思想和行为[1]。不幸的是,这种压力负担会使学生走向诸如药物,酒精和香烟等物质的危险之路,从而导致过多的严重健康并发症[3]。医疗课程期间的生活质量应具有同等的重要性。自由压力可以提高
智力残疾(ID)在获取知识和进行日常活动时对个人提出了巨大的挑战。这种情况通常源于多种因素,例如先天性先天缺陷,遗传状况或受伤的伤害,深刻影响着言语,流动性,社会理解和适应性技能等关键方面。有效地应对这些挑战,早期干预和专业教育在为智障儿童提供对发展的必要支持方面发挥了关键作用。在这种情况下,人工智能(AI)成为一种高度有前途的工具,能够促进智障人士的有效沟通。AI技术提供个性化的交流支持,早期诊断方面的帮助,并提供适合智障人士需求的可配置疗法。此外,AI的贡献扩大了这些人的整体福祉,使他们有能力实现更大的领先地位和改善的生活质量。各种待遇和支持服务,例如早期干预计划,特殊教育和职业计划,在促进智力残疾者的成长和实现方面发挥了至关重要的作用,使他们能够在社会上蓬勃发展。AI技术的整合具有进一步增强残疾人生活的巨大潜力。基于AI的应用程序,包括实时字幕,手语翻译,机器人援助,虚拟现实和大脑计算机接口,是促进智障人士的包容性和独立性的变革性工具,为更易于访问和赋予未来的方式铺平了道路。
帕金森氏综合症是一组涉及黑质纹状体多巴胺能途径的进行性神经退行性疾病,其特征是多种运动和非运动症状。这些综合征很普遍,可以深刻影响患者及其家人的生活。除了经典的帕金森病外,帕金森氏综合症还包括多种其他疾病,共同称为帕金森氏症综合症或非典型帕金森氏症。这些特征是帕金森氏帕金森运动症状,具有其他明显的临床特征。多巴胺转移者SPECT已开发为评估纹状体中多巴胺转运蛋白水平的诊断工具。使用碘123(123 I)ioflupane的成像评估可用于区分由黑质性变性引起的帕金森氏综合症与其他临床MIMICS,例如必需震颤或精神震颤。多巴胺转运蛋白成像在诊断帕金森氏综合症中起着至关重要的作用,尤其是在不明确符合诊断临床标准的患者中。诊断澄清可以使适当的患者早期治疗并避免误诊。目前,只有美国食品和药物管理批准了多巴胺转运蛋白SPECT的定性解释,但经常使用定量解释来补充定性解释。替代方法,以评估ni毛变性。作者提供了患者制备,常见成像发现以及放射科医生和核医学医师在执行和解释多巴胺转运蛋白检查时应知道的潜在陷阱的概述。
肠道微生物组包括数万亿微生物,并通过调节代谢,免疫反应和神经元功能来深刻影响人类健康。肠道微生物组组成中的破坏与各种炎症状况,代谢性疾病和神经退行性疾病有关。但是,确定基本机制和建立原因和效力非常困难。临床前模型为肠道微生物组在疾病中的作用提供了重要的见解,并有助于鉴定潜在的治疗干预措施。人类微生物组的行动联盟启动了Delphi调查,以评估包括动物和基于细胞模型在内的临床前模型的实用性,以阐明肠道微生物组在这些疾病中的因果作用。Delphi调查旨在解决选择适当的临床前模型以有效研究疾病因果关系并有效研究宿主 - 微生物组相互作用的复杂性。我们采用了一种结构化方法,其中包括文献综述,专家研讨会和德尔福问卷,以收集来自各种利益相关者的见解。要求专家评估这些模型在解决肠道微生物组与疾病发病机理之间因果关系方面的优势,局限性和适用性。由此产生的共识陈述和建议为在肠道微生物组相关疾病的未来研究中选择临床前模型提供了宝贵的见解。
教育受到技术进步速度的深刻影响,这迫使机构进行修改和适应。管理,指导和生产可能都可以从技术进步中受益匪浅。在研究中的学生独立性增加以及学生合作学习,课程融合,学习风格策略和跨年龄辅导的收益都与其使用有关。必须通过了解课堂和行政工作中技术的优势和局限性来将理论知识转化为实践。引入基于WebCT和Blackboard的基于Web的LMS,这些LMS集成了教学和行政工具,对高等教育领域产生了深远的影响。在这项定性研究中揭示了对教育计划者和领导者的技术观点。使用称为“机构管理人员评估技术使用的访谈表”的开放式问卷收集了机构管理员对风险评估的观点。我们采用内容分析来提取有意义的信息,形成有意义的概念,逻辑上排列数据和点模式。该研究试图在数据中建立桥梁和斑点模式,从而导致更精致的概念框架。73%的管理员是自我驱动的,知识渊博的和精通计算机的,40%致力于继续其教育和专业发展。教育者和管理人员可以使用结果来更好地整合技术,增强教学法并优化行政程序,所有这些程序都会有助于更开放的创新和多样性的教育环境。
面部麻痹(FP)深刻影响着人际关系和情感表达,需要精确的诊断和监测工具以进行最佳护理。但是,当前的肌电图(EMG)系统受其庞大的性质,复杂的设置和对熟练技术人员的依赖的限制。在这里,我们报告了一种创新的生物传感方法,该方法利用了PEDOT:PSS-SODIFIFED浮动微针电极阵列(P-FMNEA)来克服现有EMG设备的局限性。柔软的系统水平力学确保对面部曲线区域的出色构成,从而使靶向的肌肉合奏运动能够检测到面部麻痹评估。此外,我们的设备熟练地捕获了每个电脉冲,以响应神经外科手术过程中的实时直接神经刺激。通过服务器将EMG信号的无线运输到医疗设施中增加了对患者的后续评估数据的访问,促进了及时的治疗建议,并在典型的6个月后续过程中允许访问多个面部EMG数据集。此外,该设备的软机制可以减轻空间复杂性,减轻疼痛的问题,并最大程度地减少与传统针电极定位相关的软组织血肿。这种开创性的生物传感策略有可能通过提供有效的,用户友好且侵入性较低的EMG设备来改变FP管理。这项开创性的技术可以在FP管理和治疗干预中更明智的决策。