评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
深度学习是目前最成功的机器学习方法,在对象识别,语音和语言理解,自动驾驶汽车,自动驾驶游戏等方面取得了显着成功。对如此广泛而有影响力的领域进行单个定义并不容易。但是,这是克里斯·曼宁(Chris Manning)的最新定义:1 1来源:https://hai.stanford。edu/sites/default/files/2020-09/ai-definitions-hai.pdf。深度学习是使用具有连续(实际数字)表示的大型多层(人工)神经网络的使用,有点像人类大脑中的分层神经元。目前,它是最成功的ML方法,可用于所有类型的ML,从小型数据和更好的扩展到大数据和计算预算,具有更好的概括。
- 常见算法:线性回归,决策树,支持向量机(SVM),K-Nearest邻居(K-NN)。- 深度学习是机器学习的一个子集,它使用具有多个层(深神经网络)的神经网络来对大型数据集中的复杂模式进行建模。
深度学习是一种自动学习方法,它基于大量示例的学习模式。 div>是一种复杂问题的特别有趣的方法,为之,数据(经验)广泛可用,但是制定分析解决方案是不可行的。 div>在本课程中,我们将探讨深度智能和计算机视觉的基本概念。 div>我们将通过理论会议和实践示例来展示如何根据任务(对象检测,实例分割,对象之间的关系预测)和数据模式(图像,视频,3D)创建和训练深层智力模型。 div>该课程将以一些高级问题的介绍以及有关最近趋势的讨论进行介绍。 div>
在日常环境中使用物联网(IoT)传感器和设备的压倒性用途(房屋,医院,酒店,制造地板,仓库,零售店,机场,智能城市等。),如今,实时感知和驱动的长期目标是看到一个宏伟的现实。环境和自适应通信技术可以实现特定特定和不可知论的物联网产品,解决方案和服务的快速增长领域。可以建立并交付给相关人员和系统的跨业务垂直行业的各种情境知识服务和应用程序。多方面的物联网传感器嵌入到各种物理系统中,例如机器人,无人机,飞行引擎,防御设备,医疗器械,电器,厨房用具,消费电子,消费电子,货车,制造机械等。进行此填充是为了不断地监视和测量物理系统的各种参数(日志,结构,操作,健康状况,绩效,安全性等)。IoT设备和传感器部署在工作,散步,购物,社交和放松的地方是连接和数字化的实体。目标是使这些设备和传感器能够在其操作,输出和产品方面具有智能。这些要素在我们的个人,社会和专业环境中大量部署在他们的决策,交易和行为中必须具有认知和认知。数字化的实体有权收集在其环境中生成的多结构数据,清洁和关键,以实时发射可行的见解。普通的工件和文章与技术驱动的实时数据捕获,存储,处理和发音的力量进行了数字化,连接和智能。数字化和数字化技术和工具在将原始数据转换为信息和知识方面派上用场。人工智能(AI)是最有效,最深刻和相关的技术范式,可以简化,简化和加快将批处理和流数据分流为有用知识的过程。边缘AI的开创性概念(替代边缘智能,设备数据处理等)是两种强大技术的融合:边缘计算和人工智能。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
图3说明了Yolov5分类结果的实现。网络摄像头将捕获鱼类对象的实时图像,并且网络摄像头记录的输出将在Python程序中处理,其中已将ONNX文件作为学习模型合并。随后,系统将在显示器上显示鱼的图像,并配以相机捕获的鱼类。该系统成功地在监视器上成功显示了被检测到的鱼的实时图像,并伴有其各自的物种。此外,我们优化了该模型以提高速度和准确性,评估了性能指标,例如响应时间和准确率。实时鱼类分类系统展示了在渔业监测,环境研究和水产养殖行业中的潜在应用,为准确性和技术整合的持续进步铺平了道路。
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。