摘要:深空网络(也称为 DSN)是 NASA 的一个国际阵列,由巨型无线电天线组成。DSN 支持行星际航天器任务以及一些围绕地球旋转的任务。DSN 还提供射电天文学观测,以提高我们对更大宇宙中太阳系的了解。通常运行四十年或更长时间的深空网络 (DSN) 资产的升级或更换计划需要尽可能了解未来的潜在客户需求。本文介绍了规划人员用来发展这种理解的深空网络 (DSN) 方法。此外,还介绍了从该方法的应用中出现的一些关键未来任务趋势,以及这些趋势对 DSN 未来发展的影响。在 NASA 目前到 2030 年的计划中,这些趋势表明需要容纳三倍的通信链路,将下行链路速率升级到比现在高两个数量级,将上行链路速率提高大约四个数量级,并将端到端链路难度提高两到三个数量级。为了克服这些挑战,深空网络的能力和容量都需要扩大。在长途通话方面,很难超越美国宇航局的深空网络。它确实是世界上最大、最灵敏的科学电信系统。关键词:深空网络、深空网络、卫星、美国宇航局
眼睛看不到的东西 就像我们的眼睛一样,光学望远镜可以探测到可见光,但可见光只是电磁波谱的一部分。不同波长或频率的可见光在我们看来会呈现不同的颜色。当频率太高时,辐射就不再可见:我们看不到紫外线、X 射线或伽马射线。同样,当频率太低时,我们看不到红外线、毫米波或无线电波。正如某些物体在某种颜色下比在另一种颜色下更容易看到一样,在肉眼看不见的频率下观察天文物体(包括无线电观测)可能会发现新的和不同的信息。
美国宇航局依靠其深空网络 (DSN) 提供通信链路,引导和控制航天器并带回任务中的图像和其他数据。DSN 由位于加利福尼亚州戈德斯通、西班牙马德里和澳大利亚堪培拉附近的三个通信设施组成。这些设施使用天线与距离地球 10,000 英里到太阳系边缘甚至更远的航天器进行通信。美国宇航局的空间通信和导航 (SCaN) 项目办公室管理美国宇航局的空间通信活动,包括 DSN 提供的地面设施和服务,并与该机构的任务理事会合作,确定当前和未来任务的通信和导航要求。DSN 由喷气推进实验室 (JPL) 管理,由美国宇航局通过与加州理工学院签订的合同提供资金。美国宇航局的 JPL 管理和监督办公室负责监督美国宇航局与澳大利亚和西班牙政府签订的合同,以管理外国 DSN 站点的日常运营。
10.1 70 米天线替换研究 ...................................................................... 284 10.1.1 延长现有 70 米天线的使用寿命 .............................................................. 285 10.1.2 设计新型 70 米单孔径天线 ...................................................................... 285 10.1.3 排列四个 34 米孔径天线 ............................................................. 286 10.1.4 排列小型天线 ...................................................................... 287 10.1.5 排列平板天线 ...................................................................... 288 10.1.6 实施一对球形高效反射元件天线概念 ............................................. 289
美国宇航局喷气推进实验室是一家世界知名的机构,以其在深空网络上的工作而闻名,该网络负责处理行星际航天器任务,并将遥测数据与太空平台和地面跟踪站连接起来。先进且高度可靠的架构对其工作至关重要。动态系统一直是 JPL 的长期合作伙伴,也是该实验室成功不可或缺的一部分。
(Cohen 等人,1971 年);演示了基于空间的甚长基线干涉测量 (VLBI),由此明确表明违反了逆康普顿极限并对中央发动机中发生的物理过程进行了约束(Levy 等人,1986 年、1989 年;Linfield 等人,1989 年);首次探测到恒星形成过程中的坠落和由内而外的坍缩过程(Velusamy、Kuiper 和 Langer,1995 年;Kuiper 等人,1996 年);通过在行星状星云 IC 418 中探测到 3 He + 的超细线,证明在恒星结构和银河系化学演化的理解方面仍然存在差距(所谓的“ 3 He 问题”)(Guzman-Ramirez 等人,2016 年)。 DSN 天线在建立和维护国际天体参考框架 (ICRF,Fey 等人,2015 年;Charlot 等人,2020 年) 的实现方面也发挥了不可或缺的作用。ICRF 不仅是用于指定所有天文源坐标的定义框架,它还作为参考,深空航天器的天空平面位置是根据该参考来确定的,用于导航 NASA 的深空任务。本文的重点是被动射电天文观测、太阳系以外的物体或太阳系外的天体,包括天文测量观测。太阳系天体的雷达天文观测超出了本文的范围,但 Dvorsky 等人 (1992 年)、Slade 等人 (2011 年) 和 Rodriguez-Alvarez 等人 (2021 年) 及其参考文献对此进行了描述。出于类似的精神,本文不描述 DSN 天线的传输能力。这些材料中的大部分也在 DSN 的《电信接口》(2019 年)中的一系列文件中介绍过,这些文件俗称 810-005(其中模块 101、104 和 211 与射电天文观测最相关),但这里采用的是一种更适用于射电天文观测的方式。
随着人类太空探索的不断深入,远离地球的深空网络应运而生,不同于传统地面网络,其具有链路频繁中断、时间延长等特点,传统的数据传输机制无法很好地应用于深空网络。针对深空网络中确定性时延与差异化服务质量保障之间的矛盾,提出一种融合时间敏感网络与人工智能的数据传输技术,构建微机电系统(MEMS)。考虑到不同业务需求带来的服务质量差异,将深空网络中的数据传输转化为最小化传输时延与最大化链路利用率的混合整数规划问题,利用人工智能模仿学习进行求解。实验结果表明,所提算法收敛速度快、适用性强,在满足高优先级数据传输要求的同时,能够实现可靠高效的数据传输,并可显著提高吞吐量。
出版物: [1] N. Rodriguez-Alvarez 等人,“前馈神经网络去噪应用于 Goldstone 太阳系雷达图像”,遥感,2022 年 2 月 [2] CG Lee 等人,“地月空间碎片雷达的能力和可行性”,IEEE 航空航天 2023 [3] Y.-M. Yang 等人,“使用深空网络和开环跟踪测量实现地月目标检测”,IEEE 航空航天 2023 [4] CG Lee 等人,“带有 GSSR 的地基地月空间碎片雷达”,IGARSS 2023 - 2023 IEEE 国际地球科学与遥感研讨会,2023 年 [5] Y.-M. Yang 等人,“背景杂波对使用深空网络开环跟踪测量进行地月目标检测的影响”,IGARSS 2023 - 2023 IEEE 国际地球科学和遥感研讨会,2023 年 PI/任务经理。联系信息:Clement Lee 818-354-5587 clement.g.lee@jpl.nasa.gov
太空互联网技术演示的网络配置。KDSA – 韩国深空天线、DSN – 深空网络、MOC – 任务运营中心、DCC – DTN 通信中心、LCM – 着陆器通信模块、RCM – 探测车通信模块(插图信息由 ETRI 提供)。
其他天体和深空 • 将 LunaNet 框架扩展到地月之外,用于行星际和深空网络 • 高光子效率光学链路,用于 100s Mbps 直接到地球下行链路 • 高性能原子频率标准,实现单向度量跟踪数据 • 通过观察发射 X 射线的毫秒脉冲星,实现类似 GPS 的自主机载导航和计时 • 来自可用通信链路的度量跟踪数据