通过将能量转换链分成两个单独建模的部分,对发电厂的性能进行了数字模拟:(I)波浪到气动能量转换;(II)气动到电能转换。模型 I 基于线性水波理论,使用在里斯本国家土木工程实验室(比例 1:35)和科克大学(比例 1:25)不规则波浪盆中进行的模型测试结果作为输入数据(这些模型测试是在第一阶段合同 JOU2-CT93-0314 的框架内进行的)。模型 II 模拟了 Wells 涡轮机和发电机中的能量转换,并包括受控泄压阀(旁通阀)的影响。Wells 涡轮机的气动性能基于涡轮机模型测试的实验数据(可从之前在里斯本进行的实验室工作中获得)。假设涡轮机有实际的机械损耗,发电机也有机械和电气损耗。控制转速(以匹配波浪功率水平)的能力已得到适当建模。通过亚速尔群岛施工现场的 44 条波浪测量记录及其发生频率模拟了当地波浪气候。为了优化涡轮机规格,对涡轮机额定功率和涡轮机阻尼系数的不同组合进行了模拟。根据这些结果,做出了决定
Skögen等人9对95例患者进行了分析,使其与高级神经胶质瘤不同。这项研究报告了曲线下的重点操作特征区域。在另一项分类II级 - IV的研究中,Tian等人10使用支持载体机(SVM)模型进行了153例患者进行了TEXTURE分析,报告的准确性为98%。这项研究还表明,对比增强的T1加权(TICE)方法可为等级预测提供最佳序列。Xie等人11能够使用熵和无模型和动态对比增强的MR成像的熵以及III和III级胶质瘤分化III和IV级和III级。这些先前的MR成像 - 基于胶质瘤分级研究使用了直接提取的硬编码特征。我们假设这种方法限制了在多对抗MR图像中嵌入丰富信息的使用。这项工作的前提是,在图像对比度/强度的简单变化之外,丰富的成像信息如下; 1)深层嵌入在抗比例和后对比后增强的MR成像中,2)使用深度学习技术从标记的培训数据中学到了有价值的胶质瘤分级和3)。近年来,卷积神经网络(CNN)在众多视觉对象识别和图像分类研究中表现出了出色的表现。12他们还加速了医学图像分析的发展,其中13个包括肿瘤诊断的应用。14带有CNN,可以以逐层的方式从低到高水平学习特征的层次结构。15
我们将数据集分为培训和验证集。通过在k = 4个试验中采用平均验证误差来估计验证误差。我们使用了一个简单但流行的解决方案,称为k -fold cross -validaton(图2),包括将可用的训练数据分为两个分区(训练和验证),实例化k相同的模型,每倍k∈{1,2,。。。,k},并在培训分区上进行培训,同时评估验证分区。所使用模型的验证分数是k验证分数的平均值。此过程允许调整网络超参数,以便减轻过度拟合[15]。通常,将大约80%的数据用于培训集,为验证集使用20%。请注意,验证分数可能在验证拆分方面有很大的差异。因此,k倍跨瓦利达顿可帮助我们在评估模型的泛化能力时提高可靠性。
治疗的小鼠。此外,在Lomitapide处理的小鼠中,肿瘤体积或肿瘤的重量都显着降低(图。6b和6c)。此外,进行了TUNEL分析和KI-67免疫组织化学分析以检测凋亡和增殖指数。如图6D和6F,来自Lomitapide治疗的小鼠的异种移植物呈现出增加的细胞凋亡率和细胞增殖率降低。Western印迹数据显示,Lomitapide激活了肿瘤组织中的AMPK途径和自噬,这是由P-AMPK和LC3 I/II的表达水平升高所示(图6H)。值得注意的是,Lomitapide治疗对动物诱导了NO毒性作用,如主要器官的体重和病理形态不变所表明的那样(图6e和6g)。共同验证了
概览我们是激光雷达及感知解决方案市场的全球领导者。通过整合硬件和软件,我们与市场上大多数仅专注于硬件的激光雷达公司有所差异。激光雷达与视觉或其他传感器相结合形成感知解决方案,使汽车和机器人具备感知能力。我们基于芯片驱动的激光雷达硬件和人工智能感知软件开发解决方案,拓展应用场景并实现行业规模商业化。我们的业务主要包括(i)销售用于ADAS、机器人及其他非汽车行业(如清洁、物流、工业、公共服务和检查等)的激光雷达硬件产品,(ii)销售集成我们的激光雷达硬件和人工智能感知软件的激光雷达感知解决方案,以及(iii)提供技术开发及其他服务。