我们将数据集分为培训和验证集。通过在k = 4个试验中采用平均验证误差来估计验证误差。我们使用了一个简单但流行的解决方案,称为k -fold cross -validaton(图2),包括将可用的训练数据分为两个分区(训练和验证),实例化k相同的模型,每倍k∈{1,2,。。。,k},并在培训分区上进行培训,同时评估验证分区。所使用模型的验证分数是k验证分数的平均值。此过程允许调整网络超参数,以便减轻过度拟合[15]。通常,将大约80%的数据用于培训集,为验证集使用20%。请注意,验证分数可能在验证拆分方面有很大的差异。因此,k倍跨瓦利达顿可帮助我们在评估模型的泛化能力时提高可靠性。