Asanuma, C.、Thach, WT 和 Jones, EG (1983)。猴子丘脑腹侧区小脑末梢分布及其与其他传入末梢的关系。《脑研究评论》,5 (3),237 – 265。https://doi.org/10.1016/0165-0173(83)90015-2 Behrens, TEJ、Johansen-Berg, H.、Woolrich, MW、Smith, SM、Wheeler-Kingshott, C.、Boulby, PA、Barker, GJ、Sillery, EL、Sheehan, K.、Ciccarelli, O.、Thompson, AJ、Brady, JM 和 Matthews, PM (2003)。使用扩散成像对人类丘脑和皮质之间的连接进行非侵入性映射。 Nature Neuroscience,6 (7),750 – 757。https://doi.org/10.1038/nn1075 Benabid, AL, Pollak, P., Hoffmann, D., Gervason, C., Hommel, M., Perret, JE, de Rougemont, J., & Gao, DM (1991)。通过长期刺激丘脑腹侧中间核长期抑制震颤。The Lancet,337 (8738),403 – 406。https://doi.org/10. 1016/0140-6736(91)91175-T Chen, H., Hua, SE, Smith, MA, & Lenz, FA (2006)。人类小脑丘脑破坏对伸手适应性控制的影响。大脑皮层,16 (10),1462 – 1473。Chopra, A.、Klassen, BT 和 Stead, M. (2013)。深部脑刺激在治疗特发性震颤方面的当前临床应用。神经精神疾病和治疗,9,1859 – 1865。https://doi.org/10.2147/NDT.S32342 Crowell, AL、Ryapolova-Webb, ES、Ostrem, JL、Galifianakis, NB、Shimamoto, S.、Lim, DA 和 Starr, PA (2012)。运动障碍中感觉运动皮层振荡:皮层电图研究。 Brain , 135 (2), 615 – 630. https://doi.org/10.1093/brain/awr332 Cury, RG, Fraix, V., Castrioto, A., Perez Fernandez, M., Krack, P., Chabardes, S., Seigneuret, E., Benabid, A.-L., & Moro, E. (2017). 丘脑深部脑刺激治疗帕金森病震颤,基本
摘要深部脑刺激 (DBS) 是神经调节的一个关键领域,已广泛应用于治疗精神疾病的神经系统和实验测试。它与特定的治疗效果有关,而这种效果基于不断发展的机械神经科学理解的精确性。同时,由于这种理解的不完整性,在缓解症状方面也存在障碍。这些障碍至少部分基于神经精神疾病的复杂性以及 DBS 设备无法完全代表调节与这些疾病有关的病理过程广度的假体。神经假体,例如植入式 DBS 系统,除了它们旨在产生的特定神经精神变化之外,还可以对受试者产生巨大的影响。这些影响在很大程度上代表了当前神经调节辩论中的盲点。人类学叙述可以说明患者疾病的广泛存在维度以及对神经植入物的反应。结合当前的神经科学理解,神经精神人类学可以阐明神经设备作为技术“世界推动者”的可能性和局限性。
结合了影像学和症状学信息。1 由于确定适当电极轨迹的复杂性,必须从术前图像中准确分割出感兴趣的解剖结构。对于 DBS 术前规划,分割主要通过将患者图像配准到图谱空间中来确定,在该图谱空间中,感兴趣的解剖结构(通常是丘脑底核 (STN))以及其他显著区域已经预先分割。2、3 使用预先分割的图谱有几个优点。从临床角度来看,可以将大量分割区域从图谱移植到患者空间,从而简化工作流程的计算方面。从研究角度来看,使用图谱,可以将患者图像中特定于患者的信息移植回通用图谱坐标系,从而可以辨别出人群信息,这有助于指导治疗。4
反应性皮质刺激可治疗所有其他适应症 用于评审的医疗记录文件 健康服务的福利覆盖范围由会员特定的福利计划文件和可能要求覆盖特定服务的适用法律决定。可能需要医疗记录文件来评估会员是否符合覆盖的临床标准,但不能保证覆盖所要求的服务;请参阅标题为“用于评审的医疗记录文件”的协议。 适用代码 以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中的代码列表并不意味着该代码描述的服务是覆盖的或不覆盖的健康服务。健康服务的福利覆盖范围由会员特定的福利计划文件和可能要求覆盖特定服务的适用法律决定。可能需要医疗记录文件来评估会员是否符合覆盖的临床标准,但不能保证覆盖所要求的服务;请参阅标题为“用于评审的医疗记录文件”的协议。 适用代码 以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中的代码列表并不意味着该代码描述的服务是覆盖的或不覆盖的健康服务。
我们最近进行了一项横断面多中心研究,以评估摩洛哥卡萨布兰卡-塞塔特地区适合接受深部脑刺激 (DBS) 的帕金森病 (PD) 患者的患病率。该研究包括来自 15 家公立和私立中心的 370 名患者,研究期为 2023 年 10 月至 2024 年 6 月,为期 9 个月,并获得了卡萨布兰卡医学和药学学院当地伦理委员会的批准(批准号:06/2023)。我们发现,根据德尔菲共识,这些患者中约有五分之一(18.9%;95% 置信区间 14.8–23.0)是 DBS 的明确候选人。1 然而,在我们的样本中,只有一名符合条件的患者接受了这种干预,突显出护理方面存在重大差距。尽管摩洛哥的一些中心已开始实施 DBS,并取得了积极成果(报告的改善率从 50% 到 80% 不等 2),但这些项目仍未得到足够的支持。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
摘要 深部脑刺激 (DBS) 是治疗特发性震颤 (ET) 等运动障碍的成熟方法。患者脑内 DBS 导线的定位对于有效治疗至关重要。术中需要对不同电流幅度下不同位置的刺激的改善和不良影响进行广泛评估。然而,要选择最佳导线位置,必须在脑海中将信息可视化并进行分析。本文介绍了一种称为“刺激图”的新技术,该技术总结并可视化大量相关数据,旨在帮助确定最佳 DBS 导线位置。它结合了三种方法:相关解剖结构的轮廓、定量症状评估和患者特定的电场模拟。通过这种组合,刺激区域中的每个体素都被分配一个症状改善值,从而将刺激区域划分为具有不同改善水平的区域。该技术被回顾性地应用于法国克莱蒙费朗大学医院的五名 ET 患者。除了确定最佳植入位置外,由此得到的九张图还显示,改善程度最高的区域通常位于丘脑后部底区。结果证明了刺激图在确定最佳植入位置方面的实用性。
使用说明 以下承保政策适用于 Cigna 公司管理的健康福利计划。某些 Cigna 公司和/或业务线仅向客户提供使用情况审查服务,并不作出承保决定。对标准福利计划语言和承保决定的引用不适用于这些客户。承保政策旨在为解释 Cigna 公司管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件 [团体服务协议、承保证明、承保证书、计划概要 (SPD) 或类似计划文件] 的条款可能与这些承保政策所依据的标准福利计划有很大不同。例如,客户的福利计划文件可能包含与承保政策中涉及的主题相关的特定排除条款。如果发生冲突,客户的福利计划文件始终优先于承保政策中的信息。在没有控制联邦或州承保要求的情况下,福利最终由适用福利计划文件的条款决定。在每个特定情况下,确定承保范围时需要考虑 1) 服务日期有效的适用福利计划文件的条款;2) 任何适用法律/法规;3) 任何相关附属源材料,包括承保政策;4) 特定情况的具体事实。每个承保申请都应根据其自身情况进行审查。医疗主任应在适当的情况下进行临床判断,并酌情做出个人承保决定。如果护理或服务的承保范围不取决于具体情况,则只有在根据适用承保政策中概述的相关标准提交请求的服务(包括承保诊断和/或程序代码)时,才会提供报销。如果因本承保政策未涵盖的疾病或诊断而开具账单,则不允许报销服务(请参阅下面的“编码信息”)。开具账单时,提供商
摘要。目的。经颅电刺激 (TES) 是一种调节大脑活动和治疗疾病的有效技术。然而,TES 主要用于刺激浅表大脑区域,无法达到更深的目标。如 [1] 中所述,注入电流在头部的扩散受到体积传导和电流通过具有不同电导率的头部层时额外扩散的影响。在本文中,我们介绍了 DeepFocus,这是一种旨在刺激大脑“奖励回路”中深层大脑结构的技术(例如眶额皮质、布罗德曼 25 区、杏仁核等)。方法:为了实现这一点,DeepFocus 除了在头皮上放置电极外,还利用经鼻电极放置(筛板下和蝶窦内),并优化这些电极上的电流注入模式。为了量化 DeepFocus 的好处,我们开发了 DeepROAST 模拟和优化平台。 DeepROAST 使用真实的头部模型模拟复杂颅底骨骼几何形状对 DeepFocus 配置产生的电场的影响。它还使用优化方法来搜索局部和有效的电流注入模式,我们在模拟和尸体研究中使用这些模式。主要结果。在模拟中,优化的 DeepFocus 模式在几个感兴趣的区域比仅限头皮的电极产生了更大、更聚焦的场。在尸体研究中,DeepFocus 模式在内侧眶额皮质 (OFC) 产生了大场,其幅度与刺激研究相当,并且结合已建立的皮质刺激阈值,表明场强度足以产生神经反应,例如在 OFC。意义。这种微创刺激技术可以更有效、更低风险地针对深部脑结构来治疗多种神经疾病。
