确定由基于温度的复制品交换分子动力学(T-REMD)完成的最佳蛋白质构型用于使用蛋白质结合分析,这是准确描绘蛋白质在不同溶剂环境中的行为的重要过程,尤其是在确定蛋白质最佳结合位点以在蛋白质粘结剂和蛋白质蛋白质中使用的最佳结合位点。然而,该分析的完成(通过配置变化推出了顶部绑定位点)是一个多项式状态计算问题,即使在最快的超级计算机上,也可能需要多个小时来计算。在这项研究中,我们旨在确定图形切割是否提供近似溶液,最大问题可以用作一种方法,以在确定表面活性剂蛋白A(SP-A)顶部结合位点(SP-A)的顶部结合位点进行结合分析,以提供与T-REMD相似的结果。此外,我们使用实际量子处理器单元(QPU)在IFF技术的Polar+软件包中使用量子混合算法,使用模拟QPU或量子抽象的机器(QAM)在大型经典计算设备上实现Polar+的实现,并在经典的MaxCut Algorith上实施,以确定超级Commuthm ge grom computige of grow of SuperComputimant of SuperComputime,以确定超级计算机的范围。用于此问题的量子计算设备,甚至在经典设备上使用量子算法。这项研究发现,Polar+对MaxCut近似算法的经典实现或GROMACS T-REMD的使用提供了巨大的加速,并在其QPU和QAM实现中产生可行的结果。然而,使用图切割方法后,缺乏直接构型变化在SP-A的结构上产生的最终结合结果与GROMACS T-REMD产生的结合结果不同。因此,需要完成进一步的工作,以将基于量子的概率转换为基于各种噪声条件的配置更改,以更好地确定量子算法和量子设备在不久的将来可以提供的准确性优势。
摘要本文提出了一种混合修饰的冠状病毒群免疫Aquila优化算法(MCHIAO),该算法(MCHIAO)编译了增强的冠状病毒群免疫优化器(ECHIO)算法和Aquila Optimizer(AO)。作为具有竞争性人类的优化算法之一,冠状病毒群免疫优化器(CHIO)超过了其他一些以生物为灵感的算法。与其他优化算法相比,CHIO显示出良好的结果。然而,CHIO与局部Optima相关,并且大规模全球优化问题的准确性降低了。另一方面,尽管AO具有显着的本地剥削能力,但其全球勘探能力却没有必要。随后,提出了一种新型的元疗优化器,修饰的冠状病毒群kepira优化器(MCHIAO),以克服这些限制并将其适应以解决特征选择挑战。在本文中,提出了三个主要的增强功能,以克服这些问题并达到更高的最佳结果,这些结果是分类的情况,使用混乱系统增强了新基因的价值方程,并受到了冠状病毒的混乱行为的启发,并产生了一种新的公式,以开关开关和狭窄的利用。MCHIAO证明,除了AO和CHIO之外,还值得十种众所周知的最著名的最先进的优化算法(GoA,MFO,MPA,GWO,GWO,HHO,HHO,HHO,HHO,WOA,IAO,NOA,NOA,NOA,NGO)。Friedman平均水平和Wilcoxon统计分析(P值)均在所有最新算法测试23个基准功能上进行。Wilcoxon测试和Friedman在29 CEC2017功能上也进行了。此外,在10 CEC2019基准功能上进行了一些统计检验。六个现实世界中的问题用于验证所提出的MCHIAO针对相同的十二个最先进的算法。在经典函数上,包括24个单峰和44个多模式函数,分别评估了混合算法MCHIAO的剥削性和探索性行为。使用Wilcoxon Rank -sum检验计算的P值证明了所提出的所有功能的统计学意义,因为发现这些P值小于0.05。