确定由基于温度的复制品交换分子动力学(T-REMD)完成的最佳蛋白质构型用于使用蛋白质结合分析,这是准确描绘蛋白质在不同溶剂环境中的行为的重要过程,尤其是在确定蛋白质最佳结合位点以在蛋白质粘结剂和蛋白质蛋白质中使用的最佳结合位点。然而,该分析的完成(通过配置变化推出了顶部绑定位点)是一个多项式状态计算问题,即使在最快的超级计算机上,也可能需要多个小时来计算。在这项研究中,我们旨在确定图形切割是否提供近似溶液,最大问题可以用作一种方法,以在确定表面活性剂蛋白A(SP-A)顶部结合位点(SP-A)的顶部结合位点进行结合分析,以提供与T-REMD相似的结果。此外,我们使用实际量子处理器单元(QPU)在IFF技术的Polar+软件包中使用量子混合算法,使用模拟QPU或量子抽象的机器(QAM)在大型经典计算设备上实现Polar+的实现,并在经典的MaxCut Algorith上实施,以确定超级Commuthm ge grom computige of grow of SuperComputimant of SuperComputime,以确定超级计算机的范围。用于此问题的量子计算设备,甚至在经典设备上使用量子算法。这项研究发现,Polar+对MaxCut近似算法的经典实现或GROMACS T-REMD的使用提供了巨大的加速,并在其QPU和QAM实现中产生可行的结果。然而,使用图切割方法后,缺乏直接构型变化在SP-A的结构上产生的最终结合结果与GROMACS T-REMD产生的结合结果不同。因此,需要完成进一步的工作,以将基于量子的概率转换为基于各种噪声条件的配置更改,以更好地确定量子算法和量子设备在不久的将来可以提供的准确性优势。
主要关键词