Farhi 等人 [ 17 ] 证明,在某些条件(难以满足)下,QAOA 可以找到组合优化问题的近似解。该算法的潜力和挑战引起了许多研究人员的注意,其中包括 [ 6 , 29 , 44 ] 等。QAOA 的灵感来自量子绝热算法 (QAA),该算法旨在找到 Hermitian 矩阵的最小特征值,该特征值称为基态能量 [ 17 , 19 , 20 ]。QAA 从一个 Hermitian 矩阵(具有已知基态)开始,在追踪基态的同时逐渐演化为另一个具有未知基态的 Hermitian 矩阵。QAA 的演化时间可能是指数级的,因此计算成本很高 [ 17 ]。此外,QAA 的成功概率通常不是运行时间的单调函数,而 QAOA 具有最优参数的性能会随着迭代次数(称为级别)的增加而提高 [ 17 ]。
主要关键词