模型梯度下降 [Sung et al '20]:围绕当前参数拟合二次模型并最小化它(BayesMGD [Stanisic et al '21]:使用贝叶斯规则来维持模型中的不确定性;解析下降 [Koczor and Benjamin
摘要 — 特征选择在机器学习中非常重要,它可用于降低分类、排名和预测问题的维数。删除冗余和噪声特征可以提高训练模型的准确性和可扩展性。但是,特征选择是一项计算量大的任务,其解决方案空间会以组合方式增长。在这项工作中,我们特别考虑了二次特征选择问题,该问题可以用量子近似优化算法 (QAOA) 来解决,该算法已用于组合优化。首先,我们用 QUBO 公式表示特征选择问题,然后将其映射到 Ising 自旋哈密顿量。然后我们应用 QAOA 来找到该哈密顿量的基态,这对应于特征的最佳选择。在我们的实验中,我们考虑了七个不同的真实世界数据集,维数高达 21,并在量子模拟器和 7 量子比特 IBM (ibm–perth) 量子计算机上(对于小型数据集)运行 QAOA。我们使用选定的特征集来训练分类模型并评估其准确性。我们的分析表明,使用 QAOA 解决特征选择问题是可能的,并且目前可用的量子设备可以得到有效利用。未来的研究可以测试更广泛的分类模型,并通过探索性能更好的优化器来提高 QAOA 的有效性。索引术语 —QAOA、特征选择、QUBO、分类
量子近似优化算法 (QAOA) 是一种利用量子计算解决组合优化问题的有前途的方法。MaxCut 问题上的 QAOA 已在具有特定结构的图上得到了广泛的研究,然而,对于该算法在任意图上的一般性能知之甚少。在本文中,我们研究了对于所有具有最多八个顶点的连通非同构图,不同图特征与 MaxCut 问题上深度最多为 3 的 QAOA 性能之间的关系。QAOA 成功的一些很好的预测因素与图对称性、奇数环和密度有关。例如,在八个顶点的图上,经过三次 QAOA 迭代后,对于不包含奇数环的图选择最优解的平均概率为 60.6%,而包含奇数环的图为 48.2%。这些研究生成的数据在一个可公开访问的数据库中共享,以作为 QAOA 计算和实验的基准。了解结构和性能之间的关系可用于识别可能表现出量子优势的组合问题类别。
Farhi 等人 [ 17 ] 证明,在某些条件(难以满足)下,QAOA 可以找到组合优化问题的近似解。该算法的潜力和挑战引起了许多研究人员的注意,其中包括 [ 6 , 29 , 44 ] 等。QAOA 的灵感来自量子绝热算法 (QAA),该算法旨在找到 Hermitian 矩阵的最小特征值,该特征值称为基态能量 [ 17 , 19 , 20 ]。QAA 从一个 Hermitian 矩阵(具有已知基态)开始,在追踪基态的同时逐渐演化为另一个具有未知基态的 Hermitian 矩阵。QAA 的演化时间可能是指数级的,因此计算成本很高 [ 17 ]。此外,QAA 的成功概率通常不是运行时间的单调函数,而 QAOA 具有最优参数的性能会随着迭代次数(称为级别)的增加而提高 [ 17 ]。
过去做出的估计值证明,现代密码的黑客入侵将需要一台具有数百万个立方体的量子计算机,但最新的作品认为可以使用更少的资源来解决该任务。因此,几个中国实验室的科学家修改了Schnorra的经典分解方法,使用QAOA量子算法来优化其最耗时的操作。因此,根据计算,根据计算,48位整数的分解需要10个“嘈杂”的物理立方体,在RSA-2048标准的黑客攻击下,372个立方体就足够了。然而,在本文预印本发布后不久,一些专家对结论的正确性表示怀疑。假定新方法在经典部分中存在隐藏的困难,并且在量子部分中的QAOA收敛性问题,显然不会导致现有的Cryptoalgorithms即时黑客入侵。
量子近似优化算法(QAOA)已被证明是一种有效的经典量词算法,从解决组合优化问题到找到多体量子系统的基础状态。由于QAOA是ANSATZ依赖性算法,因此总是需要设计ANSATZ以更好地优化。为此,我们提出了通过使用捷径为绝热性来增强QAOA的数字化版本。特别是,我们使用反磨蚀(CD)驾驶术语来设计更好的Ansatz,以及Hamiltonian和混合术语,从而增强全球性能。 我们将数字化 - 纯化的QAOA应用于Ising模型,经典优化问题和P -Spin模型,这表明在我们研究的所有情况下,它都胜过标准的QAOA。特别是,我们使用反磨蚀(CD)驾驶术语来设计更好的Ansatz,以及Hamiltonian和混合术语,从而增强全球性能。我们将数字化 - 纯化的QAOA应用于Ising模型,经典优化问题和P -Spin模型,这表明在我们研究的所有情况下,它都胜过标准的QAOA。
量子近似优化算法 (QAOA) 已被证明是一种有效的经典量子算法,可用于多种用途,从解决组合优化问题到寻找多体量子系统的基态。由于 QAOA 是一种依赖于 Ansatz 的算法,因此始终需要设计 Ansatz 以实现更好的优化。为此,我们提出了一种数字化版本的 QAOA,通过使用绝热的捷径来增强该版本。具体而言,我们使用反绝热 (CD) 驱动项来设计更好的 Ansatz,以及哈密顿量和混合项,以提高整体性能。我们将数字化 CD QAOA 应用于 Ising 模型、经典优化问题和 P 自旋模型,证明它在我们研究的所有情况下都优于标准 QAOA。
量子计算是一种计算范式,在解决各种问题时有可能超越经典方法。最近提出的量子近似优化算法 (QAOA) 被认为是近期展示量子优势的主要候选算法之一。QAOA 是一种变分混合量子-经典算法,用于近似解决组合优化问题。QAOA 针对给定问题实例获得的解决方案的质量取决于用于优化变分参数的经典优化器的性能。在本文中,我们将寻找最优 QAOA 参数的问题表述为一项学习任务,其中可以利用从解决训练实例中获得的知识来为看不见的测试实例找到高质量的解决方案。为此,我们开发了两种基于机器学习的方法。我们的第一种方法采用强化学习 (RL) 框架来学习策略网络以优化 QAOA 电路。我们的第二种方法采用核密度估计 (KDE) 技术来学习最佳 QAOA 参数的生成模型。在这两种方法中,训练过程都是在可以在传统计算机上模拟的小型问题实例上执行的;然而,学习到的 RL 策略和生成模型可用于有效地解决更大的问题。使用 IBM Qiskit Aer 量子电路模拟器进行的大量模拟表明,与其他常用的现成优化器相比,我们提出的基于 RL 和 KDE 的方法将最优差距缩小了 30 倍。15 倍。
摘要 — 量子计算是物理学、工程学和计算机科学之间多学科交叉领域的一个新兴领域,有可能对计算智能 (CI) 产生巨大影响。本文旨在向 CI 社区介绍量子近似优化方法,因为它与解决组合问题直接相关。我们介绍了量子计算和变分量子算法 (VQA)。VQA 是一种有效的方法,可以在近期在具有不太可靠量子位和早期纠错的嘈杂中型量子 (NISQ) 设备上实现量子解决方案。然后,我们解释了 Farhi 等人的量子近似优化算法(Farhi 的 QAOA,以避免混淆)。Hadfield 等人将此 VQA 推广到量子交替算子 ansatz (QAOA),这是一种受自然启发(特别是绝热)的量子元启发式算法,用于近似解决基于门的量子计算机上的组合优化问题。我们讨论了 QAOA 与相关领域的联系,例如计算学习理论和遗传算法,讨论了当前技术和有关混合量子-经典智能系统的已知结果。我们给出了 QAOA 的构建示意图,并讨论了如何使用 CI 技术来改进 QAOA。最后,我们给出了众所周知的最大割、最大二分和旅行商问题的 QAOA 实现,这些可以作为有兴趣使用 QAOA 的 CI 从业者的模板。
量子近似优化算法 (QAOA) 使用由量子演化的参数化层定义的变分拟设电路来生成组合优化问题的近似解。理论上,随着拟设深度的增加,近似度会提高,但门噪声和电路复杂性在实践中会损害性能。在这里,我们研究了一种 QAOA 的多角度拟设,它通过增加经典参数的数量来减少电路深度并提高近似率。即使参数数量增加,我们的结果表明,对于我们考虑的测试数据集,可以在多项式时间内找到好的参数。与 QAOA 相比,这种新的拟设使无限系列 MaxCut 实例的近似率提高了 33%。最佳性能的下限由传统拟设确定,我们针对八个顶点的图给出了经验结果,即多角度拟设的一层与 MaxCut 问题上传统拟设的三层相当。类似地,在 50 个和 100 个顶点图上的 MaxCut 实例集合上,多角度 QAOA 在相同深度下比 QAOA 产生更高的近似率。许多优化参数被发现为零,因此可以从电路中移除它们相关的门,从而进一步降低电路深度。这些结果表明,与 QAOA 相比,多角度 QAOA 需要更浅的电路来解决问题,使其更适合近期的中型量子设备。