Loading...
机构名称:
¥ 5.0

我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依熵、量子 R´enyi 熵、迹距离和保真度。所提出的算法在低秩情况下的表现明显优于之前的最佳算法(甚至是量子算法),其中一些算法实现了指数级加速。具体来说,对于秩为 r 的 N 维量子态,我们提出的用于计算加性误差 ε 内的冯·诺依曼熵、迹距离和保真度的量子算法的时间复杂度分别为 ˜ O ( r/ε 2 )、˜ O ( r 5 /ε 6 ) 和 ˜ O ( r 6 . 5 /ε 7 . 5 )。相比之下,先前的冯诺依曼熵和迹距离的量子算法通常具有时间复杂度 Ω( N ),而先前的最佳保真度算法具有时间复杂度 ˜ O ( r 12 . 5 /ε 13 . 5 )。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。这是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。与现有方法相比,我们的技术的优势在于不需要对密度算子进行任何限制;与此形成鲜明对比的是,以前的方法通常需要对密度算子的最小非零特征值有一个下限。

计算量子熵和距离的新量子算法

计算量子熵和距离的新量子算法PDF文件第1页

计算量子熵和距离的新量子算法PDF文件第2页

计算量子熵和距离的新量子算法PDF文件第3页

计算量子熵和距离的新量子算法PDF文件第4页

计算量子熵和距离的新量子算法PDF文件第5页

相关文件推荐

2020 年
¥7.0
2024 年
¥1.0
2024 年
¥17.0