(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
夜间摄影经常在低光和模糊之类的挑战中挣扎,源于黑暗的环境和长时间的暴露。当前方法要么无视Pri-ors,直接拟合端到端网络,导致不稳定的照明,要么依靠不可靠的手工制作的先验来限制网络,从而为最终结果带来了更大的错误。我们相信,数据驱动的高质量先验的力量,并努力在事先提供可靠和同意的情况下,规避了手动先验的限制。在本文中,我们提出了使用矢量量化的代码书(VQCNIR)更清晰的夜间图像修复,以实现对现实世界和合成基准测试的重新恢复结果。为了确保忠实地恢复细节和照明,我们提出了两个基本模块的合并:自适应照明增强仪(AIEM)和可变形的双向交叉注意(DBCA)模块。AIEM利用了功能与动态照明功能和高质量代码簿功能之间的一致性的通道间相关性。同时,DBCA模拟通过双向交叉注意和可变形的会议有效地整合了纹理和结构信息,从而增强了平行解码器之间的细粒细节和结构性保真度。广泛的实验验证了VQCNIR在弱光条件下增强图像质量的显着好处,展示了其在合成和实际数据集中的最新性能。该代码可在https://github.com/alexzou14/vqcnir上找到。
Lucid Dreaming是一种独特的意识状态,而在梦想者可以进行自愿行动的睡眠中,不受身体世界的限制并控制他们的梦想的限制,提供了各种心理和身体健康的好处。当前的研究结合了多个清醒的梦想诱导技术,通常是在实验室环境中进行的,由于依靠研究人员手动监控而缺乏自主权。最近的研究还主张一个模块化系统,该系统可以整合多个清醒的梦想诱导技术。我们提出了Lucientry,它是一个包括移动应用程序的原型,该应用程序可指导用户进行睡眠前的认知训练以及一个评估用户睡眠阶段并触发外部刺激的系统,从而自动诱导Lucid Dreams。我们希望这个模块化自主系统能够改善研究过程,并有助于进一步研究清醒梦。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
2019年,https://brokingdefense.com/2019/10/ethical-ai-for-war-defense-innovation-board-says-it-can-be-done/,
摘要:要将遥控无人驾驶飞行器全面融入民用空域,首先需要在飞行器中集成交通检测和规避 (DAA) 系统。DAA 系统支持遥控飞行员执行与其他飞机保持良好距离并避免碰撞的任务。已经进行了多项与保持良好距离功能设计相关的研究,这些研究为制定适用于非欧洲国家的技术标准提供了参考。本文提出了一种保持良好距离的实施方案,利用过去的国际项目成果,满足欧洲空域的需求和特殊性,并为遥控飞行员和空中交通管制员所接受,对载人飞机使用的标准操作程序的影响极小。所提出的“保持清晰”软件已通过实时模拟成功验证,其中飞行员和管制员参与了模拟,并考虑到欧洲空域常见的交通相遇和任务场景。所取得的成果凸显了所提出的 RWC 功能提供的适当态势感知,以及其对远程飞行员在解决冲突方面做出适当决策的有效支持。实时模拟测试表明,在几乎所有情况下,RWC 机动都成功执行,为 RP 提供了足够的时间来评估冲突、与管制员协调(如果需要)并执行机动。所提出的 RWC 功能的基本作用在管制员不提供任何分离规定的非管制空域类别中尤为明显。此外,其有效性也在管制空域中与按照目视飞行规则飞行的飞机相遇时得到了测试,管制员没有被告知或对这些飞机的信息较少。验证测试结果表明了两个关键的潜在安全优势,即:减轻执行防撞操作的负担并防止潜在冲突,同时不会扰乱交通流并可能产生其他潜在危险情况的进一步后果。