获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
相对熵或能量技术已广泛用于时间相关偏微分方程的存在性、稳定性和离散化误差分析;我们参考[17]对抛物线发展问题相应结果的最新总结。在本文中,我们感兴趣的是双曲问题,其中相对熵参数的使用可以追溯到DiPerna [7]和Dafermos [5]的开创性著作;另请参阅[6]对该领域的介绍。通常涉及的方面有:收敛到稳定态,解对初始数据和参数的稳定依赖性,以及渐近极限。后者的例子包括欧拉和纳维-斯托克斯方程的低马赫极限,例如在[10]中对其进行了研究。Huang等人在一系列论文[11]中研究了阻尼欧拉方程解到Barenblatt解的长时间收敛性。