g热热泵(GHP)是一项相对较新的技术,可以为房主省钱。这些地面源热泵使用地球或地下水的天然热量存储能力提供节能加热,热水。地热加热比电阻加热更有效。这些系统通常也比天然气或油发热系统更有效。它们比空气源热泵更节能,因为它们从全年的温度中吸收或释放热量,而不是向空气释放高温(通常在冬季比地球更冷,而夏季比地球更温暖,从而导致热传热较低)。地热热泵显示出在空气热泵上节省能源,因为它们从地球恒温(通过埋在地球上的水管中)提取能量,以调节房屋中的空气。从某种意义上说,地热是一种部分可再生的能量形式。加热培养基在管道中从钻孔中抽出,并将其传递给热泵的蒸发器,其能量被另一个闭合电路中循环的制冷剂吸收。蒸发的制冷剂被压缩到压缩机中,并导致温度升高。温暖的制冷剂被喂入放在锅炉水中的冷凝器中。在这里,制冷剂将其能量释放到锅炉水中,以使其温度下降,制冷剂从气体变为液体。制冷剂然后通过过滤器移至膨胀阀,在该一个膨胀阀中,压力和温度进一步降低。02。03。制冷剂现在已经完成了其电路,并且由于收集器从能源携带的能量的影响,再次将其蒸发到蒸发器中。特征:01。将来以越来越多的速度逐渐减少成本锥度。加热不含维护。您的房屋不含排放 - 适合您的个人环境。04。您不必担心您的能源供应消失。05。无需额外的锅炉室。06。您不需要烟囱或额外的坦克室。07。对您和您的亲人没有燃料的危险。08。无气连接。09。您有助于节省重要的资源。
摘要:聚酰亚胺(PI)是一类介电聚合物,用于广泛的电子设备和电气工程应用,从低压微电机到高压隔离。由于其出色的热,电气和机械性能,它们得到了很好的赞赏,每个特性都需要根据最终应用来唯一优化。例如,对于高压应用,必须优化最终的聚合物分解场和介电性能,这两者都取决于固化过程和PI的最终物理化学特性。迄今为止的大多数研究都集中在聚合物的一组有限的特性上,并分析了从物理,机械,机械或以电气为中心的观点来固化的效果。本文试图克服这一点,在同一研究中统一所有这些特征,以准确描述治疗温度对PI性质和工业加工量表的普遍影响。本文报告了同类的最广泛研究对治疗温度对聚酰亚胺的物理化学,机械,热和电气特性的影响,该特性是多酰亚胺,特定的聚乙醇硫酸苯二酚-CO-4、4'-氧基二氨基氨基氨基烷(PMDA/ODA)(PMDA/ODA)。不仅要精确地研究了治疗温度的优化,不仅在iMidation(DOI)方面进行了精确研究,而且还考虑了整个物理特性。尤其是,分析阐明了电荷转移复合物(CTC)在这些特性上的关键作用。低场处的电特性表现出可能是由于DOI引起的最终PI特性的增强。结果表明,尽管随着DOI和CTC的形成,热和机械性能都会改善,但电气特性,尤其是在高场面条件下,随着CTC形成的增加,在较高温度下降解时,拮抗行为会增强DOI。相反,在高电场上,电导率结果显示在中等温度下,强调当在这种平衡的情况下进行热进型过程时,高DOI和PI链之间的理想折衷。此平衡允许具有优化电气性能的PIFIM的最高性能,总体而言,可以实现最佳的热和机械性能。
引言光与原子旋转的耦合是使用光子(1-4)的量子信息处理中的主要工具,并以精确的光学光谱法,实现了原子结构(5、6),时间和频率标准(7)和实验室搜索的确定(8)。这些应用的性能取决于旋转的相干时间以及彼此相处的效率。在致密的原子气体中,光可以有效地与集合的集体原子自旋搭配(9)。然而,在室温及以上,由于原子与环境的相互作用以及动作倾向,这种集体旋转易于发动,这通常将相干时间限制在10至100 ms(10-14)。碱蒸气可以达到1分钟(15 - 18)的连贯时间,并且成功地用于量子磁孔应用中(9),但高质量的涂料在升高的温度下降解并因此限制了碱密度。贵重气体的奇数同位素(例如3他)的核中旋转非零。核自旋受到完整的电子壳的保护,因此表现出非常长的连贯时间,可能是很多小时。这对应于用于精确传感(19,20),医学成像(21)和寻找新物理学(22 - 25)的狭窄核能共振(NMR)(NMR)。由于贵重气体对从红外线到紫外线的光透明,因此对其核自旋的制备和监测通常依赖于与另一种旋转气体的碰撞(26,27)。我们观察到一个实质性的Noble-Gas NMR传感器使用与碱原子的自旋交换碰撞。因为碱旋转确实会亮起来,因此可以按照这种方式进行NMR信号的拾取,并以这种方式进行狭窄的光谱和长期旋转的旋转优先信号(28 - 31)。然而,各种量子光学应用都需要在光和贵族旋转之间有效的双向耦合(32 - 36)。从未实现过与长寿命核自旋的共振光学激发相对应的这种耦合。在这里,我们意识到由碱旋转介导的光和贵族旋转之间的连贯的双向耦合。
使用明智的储藏材料的太阳能温室的调查和改进需要能量,以创造适合冬季作物生产的气候。可再生能源似乎是加热温室的适当且可持续的能源。这项工作的目的是研究使用明智的储藏材料来改善内部温室气候的可能性。对半干旱地区对照和加热温室之间进行的实验测试进行了比较研究。提出了一种新设计的温室设计,该设计由一个经济的岩石床组成,该岩石是在集成的H形通道中采用的Simible Heating技术。温室捕获的多余的昼夜热量被存储到系统中,然后恢复以进行夜间加热。获得的结果表明,这种热存储系统有效,可以改善温室气候。与标准温室相比,夜间温度提高了3.2°C,相对湿度降低了9.6%。关键字:太阳能,热量存储,温室,加热系统控制,测量。1。引言最初设计的温室是由透明覆盖物限制的简单孵化器,该孵化器存储了长波长的热辐射以及短波长太阳辐射。此外,它提供了适当且适应能力的气候环境,以在产品数量和质量方面获得高收益。农业生产需要持续监测当地温室气候。使用可再生能源温室的主要功能是优化气候和生长因子和参数,例如湿度,光,温度和养分,以创造适合各种农作物的气候,并在最佳水平上进行主流[1,2]。许多研究人员在各种覆盖材料和不同类型的温室[4]研究了温室形状,结构和方向[3]的影响。在寒冷的季节(冬季),极端气候条件会导致温度下降,温室内部的湿度急剧增加。这尤其是在夜间发生的,并导致疾病并减慢植物发育的发展,这也会影响产量和产品质量。因此,在冬季,使用适当的加热系统是必要的,以改善内部气候因素和最佳农业生产。目前,常规单元用于加热温室,包括锅炉和化石燃料[5]。今天,化石燃料的成本正在大大增加[6],导致了更高的生产成本,而农民的成本降低了。