• 大致分为小FFE(3”-8”靶材)和大FFE(10”-17”靶材) • 靶材利用率高,镀膜均匀性好 • 半导体、研发、贵金属溅射、光学
在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
凹口是根据特殊工艺监控要求定制设计的,适用于工艺室配置和工艺压力,用于监控溅射、CVD、ALD、MOCVD、PECVD、PVD、蒸发和光学涂层中的气体成分和污染物。
DRP配置功能现在已进一步扩展,以支持共同散布和共反应性溅射。drp 2.5使用磁控管输出配置,但具有两个或更多不同的目标材料,形成单个薄膜材料,其中包含两个或多个组成元素。没有其他磁控管输出配置(例如此)可用于共同启动或共反应溅射。这种构型产生了几个重要的好处,包括:1)较低的底物加热,这对于热敏感的底物(即塑料,包括聚对苯二甲酸酯[PET],最常见的热塑性塑料等非常重要); 2)比标准双极,双磁孔溅射(DMS)明显高的沉积速率; 3)较低的弧产生导致较低的颗粒产生。对于诸如PET之类的材料的网络涂料,较低的底物加热至关重要。
技术技能分析技术:气相色谱(GC),红外光谱法(IR),差异电化学质谱法(DEMS)沉积方法:溅射,湿浸入电化学特征的浸润方法XRD,拉曼,TGA,下注电化学电池设计:燃料电池和电池
用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
微生物在引起污染和感染时广泛存在,因此必须从材料或区域中清除或消除它们。牙科灭菌的目的是防止生物体,手术中的污染,以维持亚皮es,食品和药物制造中,以确保在许多其他情况下污染的生物体的安全性1。使用的牙科仪器将在临床过程中被血液,体液污染,该手术将通过不同的灭菌方法清洁和消毒。这减少了医生患者,患者诊断者,牙医患者以及患者与患者2之间感染的机会。因此,灭菌在牙科领域起着重要作用。牙科诊所和医院是患者在接受基本医疗保健时应该感到安全的地方。尽管耐热塑料仪器迅速发展成为口腔医疗保健行业的前跑者,但仍有一些情况需要替代的重新处理方法。清洁患者护理设备并确保对患者安全是牙医责任3的重要组成部分3。在某些情况下,必须进行冷化学灭菌以确保对热敏感的工具进行适当准备和安全的患者重复使用。牙医,其他牙科辅助机构和患者可以将疾病进一步传播给各自的家人和朋友。灭菌的类型分为物理方法和化学方法。化学方法包括 - 醇,醛,卤素和苯酚5。可以通过接种通过针和尖锐的血液和唾液的微生物接种感染,触摸或暴露于非直觉的皮肤向感染性口腔病变,感染的组织表面或感染的液体,感染的液体或感染的液体,溅射和溅射的感染流体,感染的液体,含有液滴的途径,触觉的途径和触摸型的凝聚力,并具有触觉的途径,并具有触觉的途径,并具有触觉的途径,并具有触摸型的凝聚值医院4。 灭菌的物理方法包括 - 焚化,湿热,干热,过滤和电离辐射。感染,触摸或暴露于非直觉的皮肤向感染性口腔病变,感染的组织表面或感染的液体,感染的液体或感染的液体,溅射和溅射的感染流体,感染的液体,含有液滴的途径,触觉的途径和触摸型的凝聚力,并具有触觉的途径,并具有触觉的途径,并具有触觉的途径,并具有触摸型的凝聚值医院4。灭菌的物理方法包括 - 焚化,湿热,干热,过滤和电离辐射。
二氧化钒 (VO 2 ) 作为相变材料,可控制金属和绝缘体状态之间相变过程中传递的热量。在温度高于 68 ̊C 时,金红石结构的 VO 2 可阻挡热量并增加红外辐射反射率,而在较低温度下,单斜结构 VO 2 可充当透明材料并增加透射辐射。在本文中,我们首先介绍 VO 2 在高温和低温下的金属-绝缘体相变 (MIT)。然后,我们通过 Ansys HFSS 模拟超材料反射器的超表面 VO 2 ,以显示 VO 2 的金红石和单斜相的发射率可调性 (Δε)。在下一节中,我们将回顾在玻璃和硅基板上通过改变溅射气体压力和基板温度沉积热致变色 VO 2 的最新进展。最后,我们介绍了在高于 300̊C 的温度下,用 V 2 O 5 靶在不同氧气和氩气组合的环境中在厚 SiO 2 基底上原位溅射 VO x 薄膜的结果,然后用 x 射线衍射 (XRD) 方法对其进行了分析。基于热致变色 VO 2 的超材料结构在过去几年中为被动节能光学太阳能反射器开辟了一条新途径。