此处使用的分析和假设还取决于未来不在我们控制或任何其他人控制范围内的事件,并且不考虑许多市场和监管不确定性。实际的未来结果可能与指示的结果可能有所不同。Brattle群体不打算就任何未来结果的可能性做出任何代表性,不能并且不承担因对此分析的任何依赖而产生的损失的责任,无论是直接或结果。该分析是由Brattle Group专家Sam Newell和Wonjun Chang准备的,并反映了他们的分析和观点,并不一定反映Brattle Group的客户或其他顾问的分析和观点。
这篇论文是由Scholarworks的Walden论文和博士研究收集到您的免费和公开访问。它已被授权的学者管理员所接受的沃尔登论文和博士研究。有关更多信息,请联系Scholarworks@waldenu.edu。
•PAU将优先使用可再生能源,例如太阳能,风和其他低碳技术,以满足其能源需求。•大学将最大程度地减少其对化石燃料的依赖,并探索节能替代品以加热,冷却和运输。•将在所有校园设施中实施节能实践,并将在新的建筑和翻新工程中优先考虑节能技术。•PAU将与包括能源提供者和地方当局在内的外部合作伙伴互动,以支持采用低碳能源解决方案。
这是指整合供应链中环境的关注的过程,使排放受到控制,减少废物的产生并保护生态系统。GSCMP包括绿色采购,寻求与供应商和客户的积极合作,从策略性地使用反向物流来实践生态设计,以及有意识地绿色的内部操作。
与原生岛和太平洋岛民(NHPI)的导航和寻路的融合已演变为模范定位,导航和定时技术,这些技术有助于努力为夏威夷的山山和珊瑚礁提供努力。要从数十年的侵蚀中恢复受损的珊瑚礁,两位杨百翰大学教授正在与夏威夷的同行,该大学的波利尼西亚文化中心和Kuleana Coral Restoration合作。将近十年的时间,使用GPS和其他技术,教授一直从事环境项目,以莫卡(Mauka)为Makai,或从山到海洋到海洋。BYU教授理查德·吉尔(Richard Gill)博士说,夏威夷群岛的西方发展构成了许多环境和文化挑战,他利用遥感,生态信息和传感器仪器来评估人类对沿海和海洋生态系统的影响。“随着欧洲人的到来,环境不仅发生了不利的变化,而且通过使NA-
谷歌和微软等大型跨国公司以及包括美国联邦政府在内的各国政府宣布,他们的目标是从可追溯的可再生能源中获取所有电力消耗,这推动了全球范围内实现从“源头到插座”全天候能源可追溯性的趋势。特别是,欧盟和美国在过去 12 个月的监管变化证实了绿色氢气生产的要求,要求满足比以前可再生能源消耗更高的标准,包括全天候时间匹配。
您需要了解这些统计数据:这些来自 DESNZ(前身为 BEIS)公众态度追踪器 (PAT) 的结果是使用 2021 年秋季推出的基于地址的在线调查 (ABOS) 方法收集的,该方法使用随机概率抽样。不应将结果与使用不同数据收集方法的以前的 PAT 调查进行比较。有关详细信息,请参阅技术报告。修订:2023 年冬季报告发布后,我们发现在数据制作过程中错误地交换了与北爱尔兰和威尔士有关的数据标签。这仅影响 2023 年冬季数据,有关对可再生能源和核能的支持部分已更新了更正。有关这些更改的更多详细信息,请参阅随附的修订说明。下表显示了本报告涵盖的主题以及这些问题被纳入公众态度追踪器的时间。其中包含指向本报告中每个主题的调查结果的链接。
(i)常规的能源是广泛使用并满足我们能源需求的明显部分的能源,这些能源是:(a)化石燃料(煤炭,石油和天然气)和(b)水电(河流流动的水能量)。生物质能量和风能也属于这一类别,因为自古以来就使用了。(ii)非惯性能源是那些不像常规的能源那样广泛使用的能源,仅在有限的规模上满足我们的能量需求。太阳能,海洋能(潮汐能,波能,海洋热能,OTE),地热能和核能属于这一类。这些能源借助技术进步以满足我们不断增长的能源需求的这些能源也称为替代能源。
本研究探索了将太阳能和风能等可再生能源整合到水培温室中供电的可行性。这样,水培温室的能源自主性就得到了保证。研究首先评估了所研究系统的年用电量。还设计了一个能够满足其全年能源需求的可再生能源系统。主要目标是评估两种可再生能源(即光伏板和风力涡轮机)的效率,并通过实施模型模拟来改善它们在农业室内的整合。研究了两种场景:第一种场景代表与电网相连的带储能的光伏电站,而第二种场景代表与电网相连的风力发电厂。这项数值分析由为期一年的实验研究补充,该研究涉及连接到带储能的网络的光伏装置,而储能又连接到实验装置。为了处理可再生能源温室内的能源,开发了一种基于模糊逻辑控制器的能源管理系统。该系统旨在保持能量平衡并确保持续供电。能源管理系统优化能源流,以最大限度地减少消耗,减少对电网的依赖,提高整个系统的效率,从而节省成本并带来一定的环境效益。
脱碳的热量在全球向可持续能源转变中至关重要,并且废热液化带来了变革性的机会,尤其是在工业活动领域。因此,本研究研究了与非常规热源集成的区域供暖网络(DHN)的性能,特别是挖水和工业废物,旨在使人们对各种DHN配置的技术和环境含义有全面的了解。为此,已经开发并采用了一种精致的网络染色模拟模型来评估几种网络大小和热源组合的成本和性能,并针对英国巴恩斯利进行了案例研究。结果表明,大型网络的平均热效率约为87%。利用矿水的网络在11.6 - 11.9 p/kWh的范围内具有升级的热成本(LOCH);引入工业废物将其降低到10.6 - 10.7 p/kWh。此外,废热集成将所提供的热量的碳因子降低到0.05 kgco2/kWh。在案例研究网络所涵盖的地区从锅炉到区域供暖的过渡显示,降低边际排放量从44.76%到83.46%。这些网络实现经济生存能力的气价从8.6到8.8 p/kWh不等。总而言之,DHNS提出了,尤其是在用工业废热增强时,出现了作为Barnsley等领域的有前途的解决方案,以追求可持续的供暖。这些发现对于政策制定者和当地理事机构来说至关重要,因为英国可以满足其2050年净零野心。