David Petroy是NTS Energy的创始人,在可再生能源和可持续性方面具有20多年的专业知识。是一家地面源热泵工程设计和安装公司Blue Valley Energy的前创始人/总裁,他负责整个科罗拉多州的近100个装置。Petroy的早期经验包括领导RMS Electric的住宅和商业企业的太阳能和能源系统的技术销售。最近,他曾在科罗拉多州最大的单一站点工业用户之一Golden Aluminum担任可持续发展经理。目前,Petroy专注于他在NTS Energy的角色,NTS Energy是一家咨询公司,专门针对住宅,商业和工业客户的HVAC和能源解决方案。Neil Kolwey是西南能源效率项目(SWEEP)的工业计划总监兼建筑电气化专家。在这一职位上,他领导了旨在提高工业部门能源效率的计划,并促进有益的电气化,以脱碳化建筑物和行业。Kolwey与Sweep Buildings团队合作,积极倡导建筑物中有益电气化,强调使用高效且具有成本效益的热泵,热泵热水器和其他电器。自2020年6月以来,他还共同领导了科罗拉多州有益的电气化联盟。
°F degrees Fahrenheit AC air conditioning ACH air change per hour AHRI Air-Conditioning, Heating, and Refrigeration Institute AHU air-handling units ASHP air source heat pump BAS building automation system BMS building management system CAMA computer Assisted Mass Appraisal CBECS commercial Buildings Energy Consumption Survey CDD cooling degree day CGSHP Community Ground Source Heat Pump CHW chilled water CHWS chilled Water System CSNA气候解决方案现在ACT CV恒定数量DDC直接数字控制ECM能量保护措施EIA能源信息管理美国温室气体GENERHOUSE GAS GSHP GSHP地面源热泵HDD供热Day HHW加热热水热水热水,通风,空调和空调HWS HWS HWS热水系统kw kilow kilow kilow kilow kilow kilowatt mmcf mmcf mmcf mmcf mmcf mmcfire tiro tior psio osa tio oa oa oa oa oa oa oa oa oa oa,每平方英寸SAT供应空气温度SF平方英尺VAV可变空气体积VFD可变频率驱动
SSHP 系统最常用于在室外气温极低的地区提供电加热,这些地区的室外气温低到足以使仅使用空气对水热泵加热变得困难或成本高昂。SSHP 系统可以有效且高效地加热和冷却建筑物,而无需考虑室外气温。实现此目的的替代方法,例如电加热或化石燃料锅炉或奇特的 AWHP 设计,由于电力需求更高、公用事业成本更高或碳足迹更高而处于劣势。基于电阻的加热的电能转换效率为 1 (1),而 SSHP 系统冷却器-加热器的 COP 可高达 3 (3) 到 4 (4),从而大大降低电力需求。
建筑物的完全脱碳需要用电动设备替换燃烧设备,而空气源热泵 (ASHP) 是一种候选替代方案。然而,技术限制(例如在寒冷天气下运行时效率下降)限制了它们在全球供热市场的采用。在几种提高寒冷气候下运行的 ASHP 效率的选项中,人们考虑使用热能存储 (TES),因为它可以在寒冷时提供供暖,并将 ASHP 运行转移到天气较暖的时候。它还可以利用分时电价并在必要时支持除霜。然而,对 ASHP-TES 系统的评估仍然有限,因为传统指标无法充分反映其经济和环境效益。在这项工作中,提出了一个 Python 框架来模拟有和没有 TES 的 ASHP。提出了一些指标来分析系统在成本、等效 CO 2 排放量和效率指标方面的性能,以评估和比较替代系统。提供了针对商用热泵获得的实验数据的模型验证,以及使用科罗拉多州丹佛市的应用示例,以突出模型功能。
国家可再生能源实验室(NREL)团队感谢汤加气象,能源,信息,信息,灾难管理,环境,环境,气候变化和沟通(MEIDECC)的成员可再生能源和能源效率(PCREEE),用于提供本报告中使用的重要信息和数据。nrel还赞赏与Local2030岛网络正在进行的合作,以促进点对点交换,以识别和实施全球群岛的最佳实践解决方案。此外,NREL作者感谢以下周到的反馈:Will Rolston(全球绿色增长研究所),Kaylyn Bopp,Jacob Holden,Alicen Kandt,John Barnett和Mike Callahan,以及Katie Wensuc的编辑协助。
摘要。本文使用 Matlab-Simulink 评估了可逆双源热泵 (DSHP) 系统的性能,该系统能够交替利用来自空气和地面的可再生能源。实际利用的能源取决于基于当前外部气温的简单控制策略。通过将 DSHP 与位于博洛尼亚的独立住宅建筑(该建筑的供暖和制冷负荷严重不平衡)以及与埋管换热器 (BHE) 场耦合,进行了年度动态模拟。分析了不同的案例研究,其中修改了埋管场的长度。所得结果表明,可以确定最佳切换温度,以使固定的 BHE 场长度的年度性能因子 (APF) 最大化。此外,已证明地下埋管热泵 (DSHP) 非常有助于缩短地下埋管换热器的总长度,从而降低相关成本,并解决与地温漂移相关的问题(这些问题可能由地下埋管尺寸过小和/或建筑负荷不平衡引起)。因此,在传统的地下埋管热泵系统改造中,如果地下埋管换热器尺寸过小,建议使用 DSHP。
空气源热泵 (ASHP) 使用压缩循环制冷系统在各个位置之间传递热量 (Schoenbauer 等人,2016 年)。ASHP 系统包括一个室外机(包括风扇、室外盘管和压缩机)和一个室内机(包括室内盘管和风扇)。在加热模式下,室外机的风扇通过热交换器吸入外部空气,通过蒸发液体制冷剂吸收热量 (加拿大政府)。蒸发的制冷剂随后通过换向阀并移动到压缩机,在那里进一步压缩成气体(从而进一步加热)(加拿大政府)。然后,气体制冷剂再次通过换向阀并进入室内盘管,将气体制冷剂的热量传递到房屋中 (加拿大政府)。这会导致制冷剂重新凝结成液体并允许重复该过程。图 1 描述了此过程。用户可以通过控制恒温器将热泵切换到冷却模式,恒温器滑动换向阀,使热泵将室内热量转移到室外,并在夏季提供冷却(逆转上述过程)。图 2 描述了此冷却过程。
1 摩德纳和雷焦艾米利亚大学工程科学与方法系,Via Amendola 2, 42122 Reggio Emilia, 意大利;silvia.barbi@unimore.it(SB);simona.marinelli@unimore.it(SM);bianca.rimini@unimore.it(BR);monia.montorsi@unimore.it(MM)2 摩德纳和雷焦艾米利亚大学可持续研究、高效能源转换、建筑能源效率、照明和家庭自动化综合技术领域工业研究和技术转让跨部门研究中心,EN & TECH,Via Amendola 2, 42122 Reggio Emilia, 意大利 3 费拉拉大学 TekneHub 实验室,Via Saragat 13, 44122 Ferrara, 意大利;sebastiano.merchiori@unife.it(SM); michele.bottarelli@unife.it (MB) 4 费拉拉大学建筑系,Via Quartieri 8, 44121 费拉拉,意大利 5 摩德纳和雷焦艾米利亚大学先进机械和汽车应用研究与服务跨系中心 INTERMECH-Mo.Re.,Via P. Vivarelli 10/1, 41125 摩德纳,意大利 * 通讯地址:francesco.barbieri1@unimore.it
每年,美国有超过20% 的电力用于满足住宅和商业建筑的热需求(例如空间制冷、空间供暖和水加热)。将热能储存(TES)与建筑的HVAC 系统相结合有可能重塑建筑的电力负荷状况,并缓解可再生能源发电与建筑需求之间的不匹配。一种新型地源热泵(GSHP)系统与地下热能储存(UTES)相结合的方案已被提出,以平衡建筑的电力需求,同时仍满足其热需求。本研究采用自下而上的方法评估了拟议系统的潜在影响。并量化了对不同电力市场电力需求的影响。结果表明,在现有电网容量范围内,拟议系统在不同批发市场的最大渗透率可能在51% 到100% 之间。总体而言,大约 4600 万户独栋住宅可以改造成拟议的系统,而不会增加相应市场的年度峰值需求。通过以最大渗透率实施拟议的系统,电网级夏季峰值需求可减少 9.1% 至 18.2%。同时,在电网层面,年用电量将变化 -12% 至 2%。全国总用电量将减少 9%。[DOI:10.1115/1.4051992]
