3 A - 208/3/60、L - 230/3/60、H - 460/3/60、C - 575/3/60、D - 200/3/50、E - 400/3/50、F - 380/3/60、S - 220/230/1/60、V - 其他 4 A - 风冷、C - 远程冷凝器、D - 冷凝机组、H-热回收、R - 热泵 5 A - 钎焊 SS、B - 钎焊 SMO、C- S&T 铜、D - S&T 铜镍、O - 其他远程、R-MS 远程、V - 其他、N-无 6 A - 铜管铝翅片、B - 铜管铜翅片、C- 微通道、V - 其他 7 A - 无、B - 青铜辉光、H - Heresite、E - 电翅片、S -标准,V - 其他 8 E-ECM 风扇,H - 高静态,L - 单风扇,S - 标准,V - 其他 9 A - 钎焊 SS,B - 钎焊 SMO,E - 双壁钎焊,N - 无,V - 其他 10 R-410A、R-134a、407c
空气源热泵 (ASHP) 使用压缩循环制冷系统在各个位置之间传递热量 (Schoenbauer 等人,2016 年)。ASHP 系统包括一个室外机(包括风扇、室外盘管和压缩机)和一个室内机(包括室内盘管和风扇)。在加热模式下,室外机的风扇通过热交换器吸入外部空气,通过蒸发液体制冷剂吸收热量 (加拿大政府)。蒸发的制冷剂随后通过换向阀并移动到压缩机,在那里进一步压缩成气体(从而进一步加热)(加拿大政府)。然后,气体制冷剂再次通过换向阀并进入室内盘管,将气体制冷剂的热量传递到房屋中 (加拿大政府)。这会导致制冷剂重新凝结成液体并允许重复该过程。图 1 描述了此过程。用户可以通过控制恒温器将热泵切换到冷却模式,恒温器滑动换向阀,使热泵将室内热量转移到室外,并在夏季提供冷却(逆转上述过程)。图 2 描述了此冷却过程。
•等效的全载时间 - 建筑物的位置和使用会影响建筑物在一年中需要加热的时间。这个数字是对使用加热的每年小时数的度量,假设它是在全功率上或关闭的加热。它被计算为每年千瓦时除以kW中的峰值热载荷。如果仅在白天(例如办公室)使用建筑物,则选择1,800。如果每天使用24小时(例如医院病房),则选择2,400。全载等效小时表达了热量提取的程度,并且小时越高,地面源将耗尽越快,井眼的可持续热萃取速率就越低。
被促进到低压两相状态,并从蒸发器中的空气或水中吸收热量,以达到空气或水的冷却效果。汽化的制冷剂然后返回压缩机,并将其压缩到热气体中。当ASHP在加热模式下运行时,四向阀的流动方向会切换。压缩热气体通过四向阀到达室内冷凝器,在那里制冷剂通过将热量排入空气或水以进行空间加热来冷凝。然后将液体制冷剂插入低压两相状态,并通过室外热交换器,从周围空气中吸收热量。基于空间冷却/加热的传热流体,ASHP通常分为两种类型。空对空类型主要是指拆分空调,包装的空调等。空气对水类型用于提供高温水或冷水水,分别由不同种类的室内端子单元(例如空气处理单元,风扇线圈单元,散热器,辐射面板等)分别用于加热或冷却室内空气。
多联机VRF系统自1982年在日本诞生以来,在全球得到了迅速发展,先后于1987年进入欧洲市场,20世纪90年代末进入中国市场,2000年后进入美国市场[3]。2018年,日本多联机VRF系统年销量达14.6万台(图3(a))[4]。在中国,VRF系统多年来一直保持中央空调市场最高份额和增长率,约有一半的中型商业建筑和三分之一的大型商业建筑采用VRF系统[5]。据统计,2018年中国VRF销量达100万台左右,占全球市场的58.8%(图3(b))。而且中国市场如此巨大的销量,也推动了VRF在欧美市场的发展。
摘要。本文使用 Matlab-Simulink 评估了可逆双源热泵 (DSHP) 系统的性能,该系统能够交替利用来自空气和地面的可再生能源。实际利用的能源取决于基于当前外部气温的简单控制策略。通过将 DSHP 与位于博洛尼亚的独立住宅建筑(该建筑的供暖和制冷负荷严重不平衡)以及与埋管换热器 (BHE) 场耦合,进行了年度动态模拟。分析了不同的案例研究,其中修改了埋管场的长度。所得结果表明,可以确定最佳切换温度,以使固定的 BHE 场长度的年度性能因子 (APF) 最大化。此外,已证明地下埋管热泵 (DSHP) 非常有助于缩短地下埋管换热器的总长度,从而降低相关成本,并解决与地温漂移相关的问题(这些问题可能由地下埋管尺寸过小和/或建筑负荷不平衡引起)。因此,在传统的地下埋管热泵系统改造中,如果地下埋管换热器尺寸过小,建议使用 DSHP。
•在尺寸HVAC系统尺寸时,请确定加热设计负载。•确保HVAC系统在设计温度下具有足够的加热能力。•避免过度尺寸的热泵加热,这加剧了冷却尺寸的比率。•比较房屋的潜在冷却负载与热泵的潜在冷却。如果仅通过热泵就无法满足潜在冷却,请添加补充除湿。•强烈考虑安装符合NEEP寒冷气候空气源热泵(CCASHP)规范的可变速度热泵。产品可以在NEEP的CCASHP产品列表中找到。
混合地源热泵 (HGSHP) 系统利用较便宜的散热器(例如干式冷却器)或热源(例如太阳能集热器)来减小较昂贵的 GHE 的尺寸。因此,它比传统的地源热泵系统更具成本竞争力。与热能存储 (TES) 系统集成后,HGSHP 系统即使在 GSHP 未运行时也可以充分利用较便宜的散热器或热源提供的加热和冷却输出。HGSHP 与季节性 TES 的组合也是克服建筑物年度冷却和加热负荷不平衡的有效解决方案。本文介绍了使用 Modelica 程序开发的集成 HGSHP 和 TES 系统模型。使用该模型进行了初步的基于模拟的研究,以调查集成 HGSHP 和 TES 系统对伊利诺伊州芝加哥以供暖为主的住宅建筑的有效性。模拟结果表明:集成式HGSHP与TES能够显著提高地源热泵供暖运行时的进水温度,从而提高其运行效率,或者可以减小GHE的尺寸,达到与传统地源热泵系统相同的能效。
空气源热泵(ASHP)具有脱碳加热部门的重要潜力。在本文中,我们比较了ASHP和天然气锅炉(NGB)的环境影响(气候变化,颗粒物的形成,人类毒性和臭氧耗竭)。主要的独创性是,我们对18个欧洲国家进行了ASHP和NGB的生命周期分析(LCA),同时根据居住的热需求对ASHP进行尺寸。我们强调,使用制冷剂R290而不是R32降低了ASHP对气候变化和臭氧耗竭的影响。此外,发现建筑库存会极大地影响ASHP在几个国家的潜在好处(例如希腊捷克共和国)。在最近的住宅中,ASHP减少了18个国家中17个国家的气候变化,平均降低了54%。但是,它通常主要是由于电混合物以及使用铜进行ASHP制造而增加颗粒物的形成。我们的结果可能对欧洲政策制定者有所帮助,因为他们评估了应安装哪个国家的ASHP以产生最大的环境影响。在全国范围内,我们的结果可以帮助部署ASHP,因为它们指出应优先安装哪种住宅类型。
随着对可持续能源技术的需求不断增长,太阳能光伏 (PV) 和热泵越来越多地应用于建筑物。混合光伏热 (PVT) 集热器已研究了几十年,但尚未在市场上取得成功。本研究将 PVT 和地源热泵 (GSHP) 串联起来用于多户住宅,并将其技术和经济性能与 GSHP 和 PV+GSHP 系统进行比较。TRNSYS 中的完整系统模型用于太阳能热泵系统,气候和经济边界条件来自瑞典市场。结果表明,减少钻孔长度和/或间距而不损失或仅损失有限的效率是添加 PVT 的最大好处,然而,发现带有 PV 的全尺寸钻孔场是成本最低的设计方案。在效率低下且辅助锅炉使用率高的系统中,添加 PVT 可能是成本最低的选择,但当空间不受限制时,它并不比 PV+GSHP 更可取。由于许多多户住宅由于缺乏钻孔空间而无法安装 GSHP,因此给定热泵效率的钻孔场面积减少是显而易见的。PVT+GSHP 系统可以为以前不在热泵市场范围内的建筑提供一种新的低碳供暖替代方案。