摘要 - 滑模控制是一种鲁棒的非线性控制算法,已用于实现无人飞机系统的跟踪控制器,该控制器对建模不确定性和外部干扰具有鲁棒性,从而为自主操作提供出色的性能。无人飞机系统滑模控制应用的一个重大进步是采用无模型滑模控制算法,因为滑模控制实施中最复杂和最耗时的方面是结合系统模型推导控制律,这是每个单独的滑模控制应用都需要执行的过程。使用各种航空系统模型和真实世界干扰(例如离散化和状态估计的影响)在模拟中比较了各种无模型滑模控制算法的性能。结果表明,两种性能最佳的算法表现出非常相似的行为。这两种算法在四旋翼飞行器上实现(在模拟和使用真实硬件的情况下),并使用相同的状态估计算法和控制设置将其性能与传统的基于 PID 的控制器进行了比较。模拟结果表明,无模型滑模控制算法表现出与 PID 控制器相似的性能,而无需繁琐的调整过程。两种无模型滑模控制算法之间的比较表明,通过跟踪误差的二次均值测量,性能非常相似。飞行测试表明,虽然无模型滑模控制算法可以控制真实硬件,但在成为传统控制算法的可行替代方案之前,还需要进一步的特性描述和重大改进。无模型滑模控制和基于 PID 的飞行控制器都观察到了较大的跟踪误差,并且其性能对于大多数应用而言是不可接受的。两种控制器的性能不佳表明跟踪误差可以归因于状态估计中的误差。通过改进状态估计进行进一步测试将可以得出更多结论。关键词:无模型控制、滑模控制、鲁棒控制、飞行控制、无人机系统。1.简介
摘要 对于含可再生能源的微电网而言,频率稳定性至关重要,然而源荷不确定性会导致频率的恶化和储能设备的增加。为此,提出了一种基于滑模方法的含混合储能系统(HESS)微电网频率协调控制策略。首先,设计详细频率调节方案,将频率偏差和区域控制误差分成不同分量作为不同电源的功率参考值。其次,通过设计模糊控制器设定由超级电容和电池组成的HESS的功率阈值,以降低HESS的备用功率,避免不合理的功率输出。第三,建立含HESS的负载频率控制模型,并利用详细频率调节方案设计滑模控制。最后,通过不同算例的对比,验证了所提频率协调控制策略的有效性。
摘要 — 介绍了一种新型四轴飞行器的概念设计和飞行控制器。该设计能够在飞行过程中改变无人机的形状,以实现位置和姿态控制。我们考虑动态重心 ( CoG ),它会导致无人机的转动惯量 ( MoI ) 参数不断变化。这些动态结构参数在系统的稳定性和控制中起着至关重要的作用。四轴飞行器臂长是一个可变参数,它由基于姿态反馈的控制律驱动。MoI 参数是实时计算的,并纳入系统的运动方程中。无人机利用螺旋桨的角运动和可变的四轴飞行器臂长进行位置和导航控制。重心的运动空间是一个设计参数,它受执行器限制和系统稳定性要求的限制。提供了有关运动方程、飞行控制器设计和该系统可能应用的详细信息。此外,通过航路点导航任务和复杂轨迹跟踪的比较数值模拟对所提出的变形无人机系统进行了评估。
抽象成纤维细胞样的滑膜细胞或滑膜成纤维细胞(FLS)是关节胶囊内层的重要细胞成分,称为滑膜。它们可以在该滑膜的两个层中找到,并通过产生细胞外基质成分和润滑剂来促进正常的关节功能。然而,在类风湿关节炎(RA)等炎症状况下,它们可能开始增殖,经历表型变化,并通过其直接和间接的破坏性功能在炎症永久化中成为中心元素。它们在自身免疫性关节疾病中的重要性使其具有吸引力的细胞靶标,并且作为间充质衍生的细胞,它们的抑制作用可以进行而不会产生免疫抑制后果。在这里,我们旨在概述我们当前对RA中这些细胞潜力的理解。
LIS的设计可以分为三种一般策略:湿滑的液体注入的多孔表面(SLIPS),[2,4,7]有组织物,[3,6,19,20]和聚合物刷。[21,22]滑片依赖于两个主要因素:通过匹配表面化学,并引入表面粗糙度来最大程度地提高润滑剂对表面的亲和力,从而增强了毛细管对毛细管对底物的粘附。[5]在创建此类滑动系统的技术的开发中,已经有了巨大的研究。[5,13,23–27]典型地,该设计需要多个步骤来引入表面粗糙度,表面功能化和润滑剂。到目前为止,只有很少的研究表明了单步方法中的单块制造,例如,通过电喷雾既有透明质硅烷和全氟popotherether。[28]
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要:针对共轴旋翼飞行器自主飞行过程中模型参数的不确定性、外界扰动及传感器噪声对飞行的影响,研究位置姿态反馈控制系统的鲁棒反步滑模控制算法,以解决未知外界干扰情况下飞行器的轨迹跟踪问题。本文针对未知飞行,建立了基于受扰共轴旋翼飞行器的非线性动力学模型。然后,设计了非线性鲁棒反步滑模控制器,分为共轴旋翼飞行器的姿态控制器和位置控制器两个子控制器。在控制器中引入虚拟控制,构造Lyapunov函数,保证各子系统的稳定性。通过数值仿真验证了所提控制器的有效性。最后通过飞行试验验证了反步滑模控制算法的有效性。
摘要:降低飞机在机场地面滑行过程中的燃油消耗与排放,对降低航空公司运营成本、建设绿色机场至关重要。目前,相关研究很少考虑机场能见度低、交通冲突等运行环境的影响,降低了燃油消耗与排放评估的准确性。机场地面多种飞机地面推进系统,尤其是电动绿色滑行系统,受到业界的广泛关注。以往的评估很少考虑环境因素,难以评估不同滑行模式下燃油消耗与排放的差异。为此,基于快速记录器实际运行数据和气象数据,进行了创新性研究:(1)将机场地面能见度低和滑行冲突等因素输入燃油消耗计算模型,建立燃油消耗与排放修正模型。(2)基于修正模型,建立全发滑行、单发滑行、飞机外置地面推进系统和电动绿色滑行系统下的燃油消耗与排放模型,可以准确估算不同滑行模式下的燃油消耗与排放。(3)在上海浦东国际机场,通过敏感性分析,得到了三种推力水平下,走走停停和飞机畅通无阻滑行条件下,四种滑行模式下各机型燃油消耗与排放的差异。研究结论为机场管理部门对滑行道优化提供决策支持。
本文提出了一种基于滑模观测器的混合储能系统(HESS)动态等效荷电状态(ESOC)估计方法。由于HESS中耦合了不同类型的储能元件和电力电子电路,传统的SOC估计方法不能反映HESS的实时运行特性。针对这一问题,本文基于HESS模型构建了滑模观测器,通过采集相应的电压和电流信号,可以实时准确观测储能元件的内部参数。进一步结合实时电荷平衡的思想定义动态ESOC,以反映HESS的准确可用容量。最后,给出基于MATLAB / Simulink模型的仿真结果,验证了所提出的动态ESOC的可行性。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。