意义:功能性近红外光谱 (fNIRS) 是一种非侵入性技术,用于测量与神经功能相关的人体皮层血流动力学变化。由于其小型化潜力和相对较低的成本,fNIRS 已被提议用于脑机接口 (BCI) 等应用。与诱发神经活动产生的信号相比,大脑外生理产生的信号幅度相对较大,这使得实时 fNIRS 信号解释具有挑战性。通常使用结合生理相关辅助信号(例如短分离通道)的回归技术将脑血流动力学反应与信号中的混杂成分分离。然而,大脑外信号的耦合通常不是瞬时的,需要找到适当的延迟来优化干扰消除。
注:在不同的应用中, C1 、 C2 可考虑只装一个:在 3V 应用中建议用一个 1uF 或以上;在 4.5V 应用中建议用一 个 4.7uF 或以上 , 均为使用贴片电容;在 6V 应用中建议用一个大电容 220uF+100nF 贴片电容; C2 均靠近 IC 之 VDD 管脚放置且电容的负极和 IC 的 GND 端之间的连线也需尽量短。即不要电容虽然近,但布线、走 线却绕得很远(参考下图)。当应用板上有大电容在为其它芯片滤波时且离 TC118AH 较远也需按如上要求再 放置一个小电容于 TC118AH 的 VDD 脚上。图中 C4 ( 100nF )电容优先接于马达上,当马达上不方便焊此 电容时,则将其置于 PCB 上 ( 即 C3) 。
摘要:将点云分离为地面和非地面测量是从机载 LiDAR(光检测和测距)数据生成数字地形模型 (DTM) 的重要步骤。然而,大多数滤波算法需要仔细设置许多复杂参数才能实现高精度。在本文中,我们提出了一种新的滤波方法,该方法只需要几个易于设置的整数和布尔参数。在所提出的方法中,反转 LiDAR 点云,然后使用刚性布料覆盖反转的表面。通过分析布料节点和相应的 LiDAR 点之间的相互作用,可以确定布料节点的位置以生成地面的近似值。最后,通过比较原始 LiDAR 点和生成的表面,可以从 LiDAR 点云中提取地面点。使用 ISPRS(国际摄影测量与遥感学会)工作组 III/3 提供的基准数据集来验证所提出的滤波方法,实验结果平均总误差为 4.58%,与大多数最先进的滤波算法相当。所提出的易于使用的滤波方法可以帮助没有太多经验的用户更轻松地在自己的应用中使用 LiDAR 数据和相关技术。
图。4:主题1(S1)和股直肌的EMG预处理示例:(a)原始EMG,(b)DC去除,(c)频谱信号,(d)Butterworth高通滤波,(e)Butterworth低通滤波,(f)
等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。
光探测和测距 (LiDAR) 是一种成熟的主动遥感技术,可以提供地形和非地面物体(如植被和建筑物等)的精确数字高程测量。需要去除非地面物体才能创建数字地形模型 (DTM),该模型是仅代表地面点的连续表面。本研究旨在比较分析三种主要的去除非地面物体的滤波方法,即高斯低通滤波器、焦点分析均值滤波器和基于不同窗口大小的 DTM 斜率滤波器,以从机载 LiDAR 点云创建可靠的 DTM。分析中使用了 ISPRS WG III/4 提供的在德国 Vaihingen 上空捕获的纯住宅区 LiDAR 数据样本。视觉分析表明,高斯低通滤波器使衰减的高频物体的 DTM 变得模糊并强调了低频物体,而在较大的窗口大小下它可以更好地去除非地面物体。与高斯低通滤波器相比,焦点分析均值滤波器表现出更好的非地面物体去除效果,尤其是在窗口尺寸较大的情况下,非地面物体的细节在窗口尺寸为 25 × 25 及更大的 DTM 中几乎消失了。基于斜率的 DTM 滤波器创建的裸地模型在非地面物体的位置充满了缝隙,这些缝隙的尺寸和数量有所增加
EMI 滤波连接器提供即插即用的解决方案。它们是封装 EMI/RFI 和 EMP 瞬态保护的最节省空间的方法。单个电容器阵列可以提供多个电容值。连接器外壳保护电容器阵列和二极管免受环境、机械和热损坏。集成在连接器中的瞬态电压抑制器为敏感电路提供 EMP 瞬态保护。模块化设计技术可减小整体封装尺寸并提高可维护性。通过将滤波器和二极管集成到连接器中,可减轻系统重量。单片电容器阵列是最可靠的 EMI/RFI 滤波方法。EMI 滤波连接器使用自动测试设备进行测试和记录。
除非要使用输入滤波,否则差分反馈放大器还应具有至少 5V/ s 的转换率。如果不这样做,反馈放大器将无法响应 MOSFET 桥式逆变器输出端的高信号转换率。全功率带宽能力应至少为 0.5MHz,以最大限度地减少输入滤波。Intersil 的 CA5470 型运算放大器满足最低要求,并带有一些输入滤波,以便不超过放大器的转换率和带宽能力。引入反馈电路的滤波器延迟必须通过误差放大器传递函数中的类似超前项(零)进行补偿。由于反馈放大器是差分放大器,因此每个求和点的阻抗必须匹配,以确保良好的共模抑制,因为共模电压将包含开关频率的大部分分量。
摘要 — 量子机器学习仍然是量子计算领域中一个非常活跃的领域。其中许多方法已经将经典方法应用于量子设置,例如 QuantumFlow 等。我们推动这一趋势,并展示了经典卷积神经网络对量子系统的适应性——即 QuCNN。QuCNN 是一个基于参数化的多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似性。使用 QuCNN,可以通过单辅助量子比特量子例程实现反向传播。通过在一小部分 MNIST 图像上应用具有数据状态和滤波状态的卷积层、比较反向传播的梯度并针对理想目标状态训练滤波状态来验证 QuCNN。索引术语 — 量子计算、量子机器学习、卷积神经网络
除非要使用输入滤波,否则差分反馈放大器还应具有至少 5V/ s 的转换率。如果不这样做,反馈放大器将无法响应 MOSFET 桥式逆变器输出端的高信号转换率。全功率带宽能力应至少为 0.5MHz,以最大限度地减少输入滤波。Intersil 的 CA5470 型运算放大器满足最低要求,并具有一些输入滤波,以便不超过放大器的转换率和带宽能力。引入反馈电路的滤波器延迟必须通过误差放大器传递函数中的类似超前项(零)进行补偿。由于反馈放大器是差分放大器,因此每个求和点的阻抗必须匹配,以确保良好的共模抑制,因为共模电压将包含开关频率的大部分分量。