数字化音频信号通过低通滤波器路由,带通滤波器抑制数据信号频谱之外的干扰信号成分。内部立体声编码器处理滤波后的音频信号以产生符合标准的 MPX 信号。对于立体声信号,您可以设置导频音的级别。数字 MPX 信号用于高精度直接数字合成器 (DDS) 的频率调制。
本论文研究了 ASW eFusion,这是一种反潜战 (ASW) 战术决策辅助 (TDA),它利用卡尔曼滤波通过简化和自动化反潜战 (ASW) 值班行动中涉及的轨迹管理过程来提高战场意识。虽然这个程序目前可以帮助 ASW 指挥官管理不确定性并做出更好的战术决策,但它有几个局限性。美国第三舰队反潜战部队指挥官/特遣部队 THREE FOUR (CTF-34) 指挥官试图利用 ASW eFusion 的回放功能重新分析 ASW 任务,方法是将友军 (蓝方) 潜艇探测结果纳入其他 ASW 传感器生成的历史目标轨迹中。问题是,当操作员尝试插入时间延迟的观察数据时,该程序会出现几个系统定时问题。本论文将评估 ASW eFusion 处理延迟报告的问题能力、规定工作解决方案以及研究改进程序用户界面以供战术值班使用的方法。14. 主题术语卡尔曼滤波、反潜战、论文、融合
2 线 ±0.8 °C / ±1.6 °C ±0.2 Ω / ±0.4 Ω ±0.4 Ω / ±0.8 Ω ±0.8 Ω / ±1.6 Ω ±0.8 Ω ±0.08% / ±1% 读数 激励电流 50 µA 典型值(所有范围) 电阻范围 0 – 40,000 Ω 通用 A/D 规格 增益误差 ±0.005 %(典型值) 输入 INL 误差 6 ppm 典型值,15 ppm 最大值 输入阻抗 >5000 MΩ 抗混叠滤波 @47.6% 采样率,~100 dB/十倍频 50/60/400 Hz 陷波滤波 >70 dB,采样率为 19.7 Hz 或更低 通道间串扰 < 0.03 Ω 或 0.08 °C,使用 100 Ω PT RTD 隔离 350 Vrms,通道间和通道间过压保护 -15 V 至 +15 V(电源开启或关闭时,电流必须限制在 ±20 mA) 功耗 最大 4 W 工作温度(经测试) -40 °C 至 +85 °C 工作湿度 95%,无凝结 振动 IEC 60068-2-6 IEC 60068-2-64 5 g,10–500 Hz,正弦 5 g (rms),10–500Hz,宽带随机
锂离子电池具有能量密度高、循环寿命长、稳定性高等优点,被广泛应用于电动汽车、电网储能等领域。为保证电池系统安全可靠运行,准确快速地估计锂离子电池的健康状态(SOH)具有重要意义。锂离子电池是一个复杂的非线性动态系统,实际工作条件下锂离子电池的健康状态无法直接测得,只能通过反映电池老化程度的外特性参数来间接估计。基于单一老化特征或模型的方法难以保证可靠性。因此,本文提出了一种数据驱动的XGBoost与卡尔曼滤波相结合的多特征SOH估计方法。首先,采用主成分分析算法基于数据重构多种电池老化特征,并基于重构的特征数据构建融合多种特征的XGBoost在线估计模型。最后,该方法通过引入基于XGBoost模型实时校正的时域卡尔曼滤波实现了锂离子电池SOH的联合优化估计。结果表明,该方法提高了估计模型的准确性和鲁棒性,实现了锂离子电池SOH的高精度联合估计。
未来的机载雷达将需要在由杂波和干扰组成的干扰背景下检测目标。空时自适应处理 (STAP) 是指多维自适应滤波算法,它同时将来自阵列天线元件的信号和相干雷达波形的多个脉冲组合在一起,以抑制干扰并提供目标检测。STAP 可以改善对被主瓣杂波遮蔽的低速目标的检测、对被旁瓣杂波掩盖的目标的检测以及在杂波和干扰组合环境中的检测。本报告分析了解决 STAP 问题的各种方法。回顾了最佳或完全自适应处理。计算复杂性以及从有限可用数据中估计干扰的需求使完全自适应 STAP 不切实际。因此,需要部分自适应空时处理器。介绍了降维 STAP 算法的分类,其中算法根据所采用的预处理器类型进行分类。例如,波束空间算法使用空间预处理,而后多普勒方法在自适应处理之前执行时间(多普勒)滤波。在某些情况下,可以利用杂波的特殊结构来设计产生最小杂波等级的预处理器。对于每个类,可以采用样本矩阵求逆 (SMI) 或基于子空间的权重计算。仿真结果显示
数字孪生技术潜力巨大,特别是在基础设施、航空航天和汽车领域。然而,这项技术的实际实施速度并不如预期,特别是因为缺乏特定于应用的细节。在本文中,我们提出了一种用于随机非线性多自由度 (MDOF) 动力系统的新型数字孪生框架。本文提出的方法将问题策略性地分解为两个时间尺度 - (a) 控制系统动态的快速时间尺度和 (b) 控制系统退化的慢速时间尺度。所提出的数字孪生有四个组成部分 - (a) 基于物理的名义模型(低保真度)、(b) 贝叶斯过滤算法、(c) 监督机器学习算法和 (d) 用于预测未来响应的高保真模型。基于物理的名义模型与贝叶斯滤波相结合用于组合参数状态估计,监督机器学习算法用于学习参数的时间演变。虽然所提出的框架可以与任何贝叶斯滤波和机器学习算法一起使用,但我们建议使用无迹卡尔曼滤波器和高斯过程。使用两个示例说明了所提出方法的性能。获得的结果表明所提出的数字孪生框架的适用性和优异的性能。
滤波器是通信系统中的核心无源元件,随着 5G 技术、物联网、传感器和自动化的兴起,通信系统中的滤波器市场预计还会不断扩大。1 – 3 虽然表面声波 (SAW) 滤波器由于制造简单而在 2 GHz 以下占据主导地位,但它们在更高频率下的性能受到低表面声波速度、光刻复杂性和低品质因数的限制。1、4 与体声波 (BAW) 滤波器相比,窄叉指换能器 (IDT) 手指中的电迁移损伤和 SAW 的不均匀电流分布导致其功率处理能力较差。1 由于厚度延伸波的速度高于表面声波,因此 BAW 滤波器在 1.5 至 6 GHz 的较低 5G 频段占主导地位。高品质因数和高功率处理能力使 BAW 滤波器可以扩展到更高的频率,同时保持高 RF 性能。 1 由于这种电声滤波(因为声波的波长比相同频率的电磁波小得多)而带来的小型化优势,在毫米波范围(30 – 300 GHz)的较高频率下,其收益会逐渐减少。对于如此高的频率,使用基片集成波导 (SIW) 和腔体滤波器在光域中进行直接滤波占主导地位。5 – 9
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。