表示学习被广泛用于观察数据的因果量(例如,有条件的平均治疗效应)。尽管现有的表示学习方法具有允许端到端学习的好处,但他们没有Neyman-Ottrol-ottrodenal学习者的理论特性,例如Double Ro-Busberness和Quasi-Oracle效率。此外,这种表示的学习方法通常采用诸如平衡之类的规范约束,甚至可能导致估计不一致。在本文中,我们提出了一类新型的Neyman-Ottrodonal学习者,以在代表水平上定义的因果数量,我们称之为或称为校友。我们的旅行者具有几个实际的优势:它们允许基于任何学习的表示形式对因果量进行一致的估计,同时提供了有利的理论属性,包括双重鲁棒性和准门的效率。在多个实验中,我们表明,在某些规律性条件下,我们的或学习者改善了现有的表示学习方法并实现最先进的绩效。据我们所知,我们的或学习者是第一批提供代表学习方法的统一框架,而Neyman-ottrol-ottrodenal学习者进行因果量估计。
摘要 — 图形处理单元 (GPU) 越来越多地被应用于可靠性至关重要的多个领域,例如自动驾驶汽车和自主系统。不幸的是,GPU 设备已被证明具有很高的错误率,而实时安全关键应用程序所施加的限制使得传统的(且昂贵的)基于复制的强化解决方案不足。这项工作提出了一种有效的方法来识别 GPU 模块中的架构易受攻击的位置,即如果损坏则最影响正确指令执行的位置。我们首先通过基于寄存器传输级 (RTL) 故障注入实验的创新方法来识别 GPU 模型的架构漏洞。然后,我们通过对已确定为关键的触发器应用选择性强化来减轻故障影响。我们评估了三种强化策略:三重模块冗余 (TMR)、针对 SET 的三重模块冗余 (∆ TMR) 和双联锁存储单元(骰子触发器)。在考虑功能单元、流水线寄存器和 Warp 调度器控制器的公开 GPU 模型 (FlexGripPlus) 上收集的结果表明,我们的方法可以容忍流水线寄存器中 85% 到 99% 的故障、功能单元中 50% 到 100% 的故障以及 Warp 调度器中高达 10% 的故障,同时降低硬件开销(与传统 TMR 相比,在 58% 到 94% 的范围内)。最后,我们调整了该方法以针对永久性故障执行补充评估,并确定了容易在 GPU 上传播故障影响的关键位置。我们发现,对瞬态故障至关重要的触发器中相当一部分(65% 到 98%)对永久性故障也至关重要。
金融系统中与气候相关的漏洞在气候冲击触发时可能通过各种传输渠道和放大机制威胁金融稳定。分析与气候相关的漏洞包括通过气候冲击如何触发FSB财务稳定性监视框架中阐明的传统漏洞的追踪。这可能比非气候冲击更为复杂,因为它们的时间和幅度不确定性,临界点的非线性以及二阶和溢出效应。FSB的工作着重于评估全球金融体系中与气候相关的漏洞,特别是从跨境和跨部门的角度来看。它构成了FSB 2021路线图的一部分,以协调标准设定和其他国际机构的工作,以应对气候变化的财务风险。
由于开源软件包漏洞而引起的软件系统的复杂性日益增长,使软件漏洞检测成为关键的优先级。传统的脆弱性检测方法,包括静态,动态和混合方法,通常在高阳性速率和有限的效率方面挣扎。最近,基于图的神经网络(GNN)和变形金刚模型通过表示代码作为捕获语法和语义的图表来提高漏洞检测准确性。本文介绍了一个混合框架,结合了门控图神经网络(GGNN)和变压器编码器以利用多个图表表示:抽象语法树(AST),数据流程图(DFG),控制流程图(CFG)(CFG)和代码属性图(CPG)。GGNN提取图级特征,而变压器在图形编码数据中增强了顺序上下文理解。该模型使用这些功能来检测功能级代码段中的漏洞。评估我们在OWASP WebGoat数据集上的框架的评估证明了在五种主要漏洞类型中不同图形表示的有效性:命令注入,弱加密,路径遍历,SQL注入和跨站点脚本。实验结果表明,GGNN+CpG配置始终产生高度弱点的较高回忆,而GGNN+CFG在检测基于控制的基于控制的漏洞(例如命令注射)方面表现出色。这些发现突出了混合GNN-Transformer框架在增强网络安全应用程序的代码漏洞检测方面的潜力。GGNN和变压器模型的集成导致在所有漏洞类型中的准确性,精度,回忆和F1得分方面显着增强,每个图表表示对代码结构和脆弱性模式都有独特的见解。
Malaysia的5G网络提供商数字Nasional Berhad(DNB),通过Menlo Security的安全企业浏览器解决方案为数百名分布式用户增强端点安全性。Menlo Secure Cloud浏览器与其现有安全堆栈无缝集成,从而在端点安全中缩小了空白。
abb不提供明示或暗示的保修,包括针对本文档中包含的信息的适销性和适用性的保证,并且对本文档中可能出现的任何错误都不承担任何责任。在任何情况下,ABB或其任何供应商均不应对使用本文档的使用或使用本文档中所述的任何硬件或软件的使用,即使ABB或其供应商已被告知有此类损害的可能性,也对本文档中所述的任何硬件或软件的使用,或使用本文档中描述的任何硬件或软件的使用,对任何性质或类似的损害均不承担任何责任。
抽象 - 面部ID技术已成为移动生物识别验证的基石,提供便利性和增强的用户体验。然而,其越来越多的采用也强调了关键的安全漏洞,例如欺骗攻击,深击剥削以及与环境适应性有关的问题。本研究提出了一种新型模型,旨在解决这些脆弱性,以增强面部ID技术的可靠性和安全性。所提出的模型将高级机器学习算法与多因素生物识别验证相结合,以增强面部识别系统的鲁棒性。关键特征包括实时livese检测,反欺骗措施以及适应性识别能力,可提高各种环境和人口统计学的准确性。该模型采用混合方法,将传统的面部识别方法与补充生物识别指标(例如眼动模式和热成像)相结合,以减轻潜在的攻击量。本研究采用混合方法方法,包括模拟攻击方案,用户试验和算法性能评估。结果表明,新模型大大降低了欺骗尝试和深层违规的成功率,同时保持高认证速度和用户便利性。该研究还强调了该模型对低光和高动作条件的适应性,从而解决了当前面部ID系统中长期存在的局限性。此外,该模型为移动身份验证的未来创新铺平了道路,促进更安全,更具包容性的数字生态系统。调查结果强调了将多层安全机制合并到生物识别验证技术中,以平衡用户体验与稳健的安全性。政策含义包括
摘要 — 联邦学习是一种使多个设备能够共同训练共享模型而不共享原始数据的方法,从而保护数据隐私。然而,联邦学习系统在训练和更新阶段容易受到数据中毒攻击。使用 CIC 和 UNSW 数据集,在十分之一的客户端的 FL 模型上测试了三种数据中毒攻击 - 标签翻转、特征中毒和 VagueGAN。对于标签翻转,我们随机修改良性数据的标签;对于特征中毒,我们改变随机森林技术识别出的具有高度影响力的特征;对于 VagueGAN,我们使用生成对抗网络生成对抗样本。对抗样本只占每个数据集的一小部分。在本研究中,我们改变了攻击者修改数据集的百分比,以观察它们对客户端和服务器端的影响。实验结果表明,标签翻转和 VagueGAN 攻击不会显著影响服务器准确性,因为它们很容易被服务器检测到。相比之下,特征中毒攻击会巧妙地削弱模型性能,同时保持较高的准确率和攻击成功率,凸显了其隐蔽性和有效性。因此,特征中毒攻击可以操纵服务器,而不会显著降低模型准确率,这凸显了联邦学习系统面对此类复杂攻击的脆弱性。为了缓解这些漏洞,我们探索了一种名为“随机深度特征选择”的最新防御方法,该方法在训练期间将服务器特征随机化为不同大小(例如 50 和 400)。事实证明,该策略在最大程度地降低此类攻击的影响(尤其是在特征中毒方面)方面非常有效。
AudioCodes作为常规维护软件更新的一部分提供了所有必要的操作系统补丁程序,从而消除了单独的操作系统修补程序的需求。此外,没有可能在SBC设备上安装任何第三方应用程序。根据我们的漏洞处理程序,有声码编码提供了任何安全漏洞的补丁程序。
摘要 人工智能 (AI) 正在成为太空应用的关键技术。最近,人工智能已广泛应用于航天器操作,例如支持卫星星座的高效运行。这包括相对定位、地球观测、自主导航和报废管理等应用。虽然人工智能对于新太空资产的重要性正在上升,但人工智能容易受到网络威胁,人工智能网络安全正在成为太空安全和运营安全的重要方面。这项工作旨在确定人工智能系统可能给太空资产带来的漏洞,并分析潜在的运营威胁以及有效的技术和监管缓解措施。为了实现这一目标,本文首先研究并区分了传统空间系统中的漏洞以及与人工智能技术特别相关的漏洞。分析涵盖了人工智能技术的定义以及有关其在太空相关应用中的当前使用的详细讨论。其次,对当前太空中普遍存在的网络攻击与针对人工智能技术的网络攻击进行了比较。基于此评估,本文建议采取预防和缓解措施,这些措施取决于以基于人工智能的太空应用为重点的太空行动的网络弹性。关键词:人工智能、空间应用、网络漏洞、预防、缓解缩写