低维杂交金属卤化物正在成为一种高度有希望的单组分发射材料,用于其自我捕获的激子(STES)的独特宽带发射。尽管在这些金属卤化物的发展方面取得了长足的进步,但仍有许多挑战需要解决对结构 - 专业关系的更好的基本了解,并意识到这类材料的全部潜力。在此,通过压力调节,在瓦楞1D杂交金属卤化物C 5 n 2 H 16 Pb 2 Br 6中实现了接近100%的光致发光量子量产率(PLQY),该结构具有高度扭曲的结构,初始PLQ为10%。压缩减少了Ste状态和基态之间的重叠,从而导致抑制声子辅助的非辐射衰减。PL进化被系统地证明是由压力调节的激子 - Phonon耦合控制的,可以使用Huang-Rhys因子s进行量化。Detailed studies of the S -PLQY relation for a series of 1D hybrid metal halides (C 5 N 2 H 16 Pb 2 Br 6 , C 4 N 2 H 14 PbBr 4 , C 6 N 2 H 16 PbBr 4 , and (C 6 N 2 H 16 ) 3 Pb 2 Br 10 ) reveal a quantitative structure–property relationship that regulating S factor toward 28 leads to the maximum emission.
过去几十年来,生长技术的令人瞩目的进步使得人们能够制造出非常高质量的低维半导体结构——量子阱、量子线和量子点,这为光电子学和自旋电子学领域的量子信息技术开辟了新的研究途径和无数的应用 1-3 。作为量子限制的直接结果,基本半导体激发可以达到非常大的结合能,使所谓的“激子”领域成为一个有前途的研究领域 4 。虽然激子的概念在空间限制沿一维(量子阱)或二维(量子线)时有意义,但我们在这里表明,当三个空间维度受到限制(量子点)时,束缚电子-空穴对作为激子的图像会被打破。这就是为什么我们不应该像对待其他结构那样将量子点 (QD) 中的电子-空穴对称为激子,而应该使用其他术语。这个问题不仅仅是语义问题;对于电子-空穴对与其他载流子相互作用并与光子耦合,以及光子吸收的可能性,物理理解完全不同。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
抽象的二维(2D)半导体材料已被广泛研究其有趣的激子和光电特性,这些特性是由强烈的多体相互作用和在2D极限下的量子限制引起的。这些材料中的大多数都是无机的,例如过渡金属二北元化,磷烯等。有机半导体材料的出色电导率和低介电系数,用于在薄膜或大量材料相中的类似应用。在薄膜和散装相中缺乏结晶度,导致了激子和电子/光节间隙特性的歧义。最近的2D有机材料的出现已经打开了一个高结晶度和受控形态的新领域,从而可以研究低洼的激子状态和光电特性。与无机2D材料中的Wannier -Mott激子相比,它们已被证明具有不同的激子特性。在这里,我们介绍了我们最近对2D有机半导体材料的实验观察结果和分析。我们讨论了单晶材料的高晶和形态控制的生长及其光电特性的作用。该报告解释了有机材料中的Frenkel(FR)和电荷转移(CT)激子以及随后的光发射和吸收特性。实验研究并讨论了源于CT和FR激子之间的相互作用,这是由CT和FR激子之间的相互作用产生的,以揭示电子带的结构。然后,我们讨论我们在J型聚集的有机材料中观察到的纯FR行为,从而导致连贯的超级激体排放。在有机材料中,激发子的超级转移,由其纯粹的fr性质促进,以及在大量分子上的激子的离域化。最后,我们讨论了这些有机2D材料的应用和视力,在快速有机发光二极管,高速激发电路,量子计算设备和其他光电设备中。
在当今的大型半导体物理学中引入,对光 - 耦合的控制产生了一个迷人的对象:激烈的对象。这些杂交光 - 用式元素 - ticles从激子(绑定的电子 - 孔对)和光子之间的混合物中出现。虽然散装半导体中存在激子 - 极地,但已经用嵌入光学微腔内嵌入异质结构中的二维(2D)激子获得了主要进步,如图1 a所示,为1。兴趣 - 吨 - 极性子具有从其激子部分和光子部分继承的独特属性,使它们成为强烈的研究兴趣的主题,其含义从基本物理学2到光电3和量子技术的实用应用。4
有机半导体是无序的分子固体,因此,它们的内部电荷产生动力学,电荷传输动力学,最终由它们所构成的光电设备的性能由能量疾病控制。这对于新兴的光伏技术尤其相关,其中可提取功率直接取决于这些动力学。为了确定能量障碍如何影响电荷发生,激子传输,电荷传输以及有机半导体设备的性能,首先需要一种准确的方法来衡量此关键参数。在这项工作中,可以证明有机半导体的静态疾病可以从其光伏外部量子效率谱从吸收开始附近的波长处获得。与计算框架一起介绍了一种详细的方法,用于量化与单重激子相关的静态能量障碍。此外,作者还表明,将光学干扰的限制效应最小化对于实现高临界量化至关重要。最后,采用透明设备来估计几种具有技术相关的有机半导体供体 - 受体混合物的激发静态疾病,包括高效率有机光伏系统PM6:Y6。
1 华沙大学物理学院实验物理研究所,ul. Pasteura 5, 02-093 Warszawa,波兰 2 弗罗茨瓦夫理工大学技术基础问题学院半导体材料工程系,Wybrze _ ze Wyspia nskiego 27, 50-370 Wrocław,波兰 3 华沙大学化学学院电化学实验室,ul. Pasteura 1, 02-093 Warszawa,波兰 4 北京航空航天大学微电子学院合肥创新研究院,合肥 230013,中国 5 巴塞罗那地球科学中心 (GEO3BCN),CSIC,Llu ıs Sol ei Sabar ıs sn,加泰罗尼亚,08028 巴塞罗那,西班牙 6 弗罗茨瓦夫理工大学实验物理系,Wybrze _ ze Wyspia nskiego 27,50-370 弗罗茨瓦夫,波兰
