Abstract The assembly of monolayer transition metal dichalcogenides (TMDs) in van der Waals heterostructures yields the formation of spatially separated interlayer excitons (IXs) with large binding energies, long lifetimes, permanent dipole moments and valley-contrasting physics, providing a compelling platform for investigating and engineering spatiotemporal IX propagation with highly tunable动力学。进一步扭曲堆叠的TMD单层可以创建具有空间修改的带结构和不同的Moiré电位的长期周期性Moiré模式,具有定制的陷阱,这些陷阱可以引起与密度依赖性相变的强相关性,以调节激子运输。TMD异质结构中丰富的激子景观,加上Valleytronics和Twistronics的进步,对探索激子综合电路的巨大希望基于操纵激烈的扩散和运输。在这篇综述中,我们全面概述了了解IXS和Moiré激子的最新进展,特别关注了TMD异质结构中新兴的激子扩散和运输。我们强调通过各种方法对激子通量进行空间操纵,包括激子密度,介电环境,电场和结构工程,以进行精确控制。这种操纵激子扩散的能力为相互交流和信号处理提供了新的可能性,为在高性能光电上的激发应用铺平了道路,例如激发设备,valleytronic晶体管和光电探测器。我们终于通过概述了利用IX电流的观点和挑战来结束这项审查,用于下一代光电应用。
主要关键词