通信[4] 环境监测[5] 以及可穿戴和神经形态计算[6]。这也将对物联网 (IoT) 产生影响,在物联网中,智能对象通过无线连接与环境和人体进行交互。[7] 由柔性材料制成的高性能电子设备可以在高速通信、高效图像传感等方面增加新的功能。[4c,8] 例如,如果单个光电探测器 (PD) 设备可以在宽光谱下以低功耗和低延迟工作,则可以显著提高无线通信的传输速率、传输容量和效率。此外,单个 PD 可以满足对宽光谱开关 [9] 或存储器存储 [10] 的需求。然而,到目前为止的研究主要集中于在特定波长(即紫外线 [1b,10,11] 可见光 [12] 或近红外 [13] 光谱)下高性能柔性 PD 的开发和特性描述。近来,很少有人尝试开发超快和可共形宽带光电探测器件。[8b,14] 其中,基于二维材料和钙钛矿的异质结构已显示出扩展光电探测器件工作波长的潜力。[14] 这是由于它们具有直接带隙和大吸收系数。[15] 具体而言,由于钙钛矿可溶液加工且制造成本低廉,因此在光电应用方面引起了更多关注。然而,由于迁移率低(≈1-10 cm 2 Vs)[16] 和稳定性差,[17] 光电探测器件的性能指标(例如响应度 [ R ] 和特定探测率 [D*])一般。环境条件下稳定性差的原因是水和氧分子的吸附,这大大加速了钙钛矿感光层的降解。 [15a] 人们正在努力通过不同的封装方式来提高钙钛矿基器件的稳定性,但低固有迁移率仍将是一个挑战。因此,人们仍在努力开发下一代具有宽光谱灵敏度和稳健制造路线的柔性高性能 PD。在上述背景下,砷化镓 (GaAs) 等无机化合物半导体的纳米结构和薄膜已显示出巨大的光电潜力
微米级氧化镓薄膜中的定向载流子传输用于高性能深紫外光电探测 张文瑞 1,2 * 王伟 1 张金福 1 张谭 1 陈莉 1 王刘 1 张宇 3 曹彦伟 1 季莉 3 叶吉春 1,2 * 1 中国科学院宁波材料技术与工程研究所,浙江省能源光电子材料与器件工程研究中心,浙江 宁波 315201 2 甬江实验室,浙江 宁波 315201 3 复旦大学微电子学院专用集成电路与系统国家重点实验室,上海 200433 关键词:紫外光电探测器,宽禁带半导体,氧化镓,载流子传输,缺陷
红外探测与现代微电子技术的融合为紧凑型高分辨率红外成像提供了独特的机会。然而,作为现代微电子技术的基石,硅由于其带隙为 1.12 eV,只能探测有限波长范围(< 1100 nm)内的光,这限制了其在红外探测领域的应用。本文提出了一种光驱动鳍片场效应晶体管,它打破了传统硅探测器的光谱响应限制,同时实现了灵敏的红外探测。该装置包括用于电荷传输的鳍状硅通道和用于红外光收集的硫化铅薄膜。硫化铅薄膜包裹硅通道形成“三维”红外敏感栅极,使硫化铅-硅结处产生的光电压能够有效调节通道电导。在室温下,该器件实现了从可见光(635 nm)到短波红外区域(2700 nm)的宽带光电探测,超出了常规铟镓砷和锗探测器的工作范围。此外,它表现出 3.2×10 −12 的低等效噪声功率
光电探测、光化学、活性超材料和超表面等应用需要从根本上理解金属纳米系统中的超快非热和热电子过程。低损耗单晶金的合成和研究最近取得了重大进展,为其在超薄纳米光子结构中的应用开辟了机会。在这里,我们揭示了单晶和多晶超薄(厚度低至 10 纳米)金膜之间热电子热化动力学的根本差异。弱激发和强激发状态的比较展示了中观金中热化和非热化电子动力学之间违反直觉的独特相互作用,以及 X 点带间跃迁对带内电子弛豫的重要影响。我们还通过实验证明了热电子转移到基底中以及基底热性质对超薄膜中电子-电子和电子-声子散射的影响。测量到单晶金向 TiO 2 的热电子注入效率接近 9%,接近理论极限。这些实验和建模结果揭示了结晶度和界面对众多应用中重要的微观电子过程的重要作用。
这是一系列论文中的第一篇,旨在根据量子场论中的不等时间关联函数来发展相对论量子信息论。在本文中,我们重点介绍了两种形式,它们可以一起提供适合进一步发展的有用理论平台:1)使用量子时间概率 (QTP) 方法进行量子场测量;2)用于因果时间演化的封闭时间路径 (CTP) 形式。QTP 将探测器纳入量子描述,同时强调测量记录是宏观的,可以用经典时空坐标来表示。我们首先给出 n 个测量事件概率的 QTP 公式的新的、基本的推导。然后,我们通过编写关联相关生成函数的显式公式来证明 QTP 与封闭时间路径形式的关系。我们利用 CTP 形式的路径积分表示,以便用路径积分来表示测量概率。之后,我们提供 QTP 形式的一些简单应用。特别是,我们展示了 Unruh-DeWitt 探测器模型和 Glauber 的光电探测理论如何作为极限情况出现。最后,由于量子关联是相对论量子信息和测量中的关键概念,我们强调了 CTP 双粒子不可约有效作用所起的作用,它使我们能够利用非平衡量子场论的资源来实现我们所述的目的。
• 国际粉末冶金和新材料先进研究中心 (ARCI) 内部开发了一种基于低温制备的 1D-TiO2-3D-CdS 异质结构的自供电光电探测器,用于宽带光电探测。在 DST-TRC 项目下,利用相变材料 (PCM) 胶囊组装了一个恒温 1kwh 容量的热能存储原型,并成功与 ARCI 现有的抛物面槽式集热器 (PTC) 集成以存储太阳热能,并且通过水热法制备了用于 Li-S 电池的多孔碳球形颗粒。 • 纳米和软物质科学中心 (CeNS) 的研究人员与 JNCASR 合作,开发了一种经济实惠的电致变色智能窗 (ECSW) 解决方案,以满足全球建筑供暖和制冷的能源需求,这占能源消耗的 30% 以上。通过消除昂贵的 ITO 并利用 260 nm WO3 薄膜,该团队创造了一种不含 ITO 的全钨 ECSW,其透射率极低(约 3%)且完全不透明。这项创新具有大规模生产的巨大潜力,既能提高能源效率,又能增强隐私。该项目由科技部支持,代表了可持续智能窗户技术的突破。
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。