摘要:低成本、易于集成的硅 (Si) 光子学光电探测器 (PD) 仍然是光子集成电路 (PIC) 的瓶颈,特别是对于 1.8 μ m 以上的波长。多层铂硒化物 (PtSe 2 ) 是一种半金属二维 (2D) 材料,可以在 450°C 以下合成。我们通过在 Si 波导上保形生长直接集成基于 PtSe 2 的 PD。PD 在 1550 nm 波长下工作,最大响应度为 11 mA/W,响应时间低于 8.4 μ s。1.25 至 28 μ m 波长范围内的傅里叶变换红外光谱表明 PtSe 2 适用于远至红外波长范围的 PD。我们通过直接生长集成的 PtSe 2 PD 优于通过标准 2D 层转移制造的 PtSe 2 PD。红外响应性、化学稳定性、低温下选择性和保形生长以及高载流子迁移率的潜力相结合,使 PtSe 2 成为光电子和 PIC 的有吸引力的 2D 材料。关键词:铂硒化物、光电探测器、硅光子学、二维材料、红外 ■ 简介
本文介绍了 408 nm – 941 nm 范围内高灵敏度栅/体连接 (GBT) 金属氧化物半导体场效应晶体管 (MOSFET) 型光电探测器的光电流特性。高灵敏度对于光电探测器非常重要,它用于多种科学和工业应用。由于其固有的放大特性,GBT MOSFET 型光电探测器表现出高灵敏度。所提出的 GBT MOSFET 型光电探测器是通过标准 0.18 µm 互补金属氧化物半导体 (CMOS) 工艺设计和制造的,并分析了其特性。分析了光电探测器的宽长比 (W/L)、偏置电压和入射光波长。实验证实,所提出的 GBT MOSFET 型光电探测器在 408 nm – 941 nm 范围内的灵敏度比相同面积的 PN 结光电二极管高 100 倍以上。
摘要。我们报告了使用扭转和双轴定向的聚乙二醇苯二甲酸酯铰链的两轴可易剂显微镜镜。研究了基于四个或单线电磁执行器的两种不同的设计。开发了一种基于微加工的工厂过程,以实现高模式分辨率和对准精度并减少手动组件的量。具有扭转铰链,快速轴的谐振频率为300至500 Hz,水中有200至400 Hz。带有弯曲的铰链,慢速轴的共振频率为60至70 Hz,水中的谐振频率为20至40 Hz。2D B扫描和3D体积超声显微镜使用杂交扫描镜进行了证明。在直流或非常低的频率下扫描慢轴的能力允许形成密集的栅格扫描模式,以改善成像分辨率和视野。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jom.1.4.044001]
摘要:金属 - 半导体 - 金属等离激元纳米结构可以通过增强局部静电式和光学效果来实现芯片效果的操纵和超快光电检测。后者是通过使用纳米结构的薄膜(GE)等离子体 - 波导指导光电遗传学来实现的。虽然它们的大小和位置可以在纳米化过程中准确控制,但由于沉积的无定形性质,检测器的官能显着降低。我们证明,通过空间控制激光诱导的GE结晶,可以显着提高波导积分GE等离子光电探测器的效率(超过2个数量级)。我们研究了经过800 nm激光处理的自由空间和波导综合的GE光电探测器,通过拉曼光谱监测结晶程度,并通过检测电信辐射来证明效率提高。可以在各种纳米仪设备中使用所证明的局部后处理技术,以实现有效和超快的芯片辐射监测和检测,从而显着改善了检测器特性,而不会危及其他组件的性能。关键字:表面等离子体偏振子,等离激元波导,片上光反检测,激光诱导的结晶
本文报告了基于β-GA 2 O 3纳米膜(NM)的柔性光电探测器(PDS)及其光电特性在弯曲条件下的证明。柔性β-GA 2 O 3 nm PDS在弯曲条件下表现出可靠的太阳灯光检测。有趣的是,在弯曲条件下观察到了最大太阳盲图的波长略有变化。为了研究这种峰值变化的原因,测量了不同应变条件下β-GA 2 O 3 nms的光学特性,并揭示了由于β-GA 2 O 3 Nms中纳米级裂纹而导致的折射指数,灭绝系数和应变的β-GA 2 O 3 Nms的带隙。多物理学模拟和严密功能理论的计算结果的β-GA 2 O 3 nms表明,传导带的最小值和价带的最大状态几乎与施加的单轴菌株线性移动,从而导致β-GA 2 O 3 Nm的光学性质变化。我们还发现,β-GA 2 O 3 nm中的纳米间隙在弯曲条件下在弯曲条件下增强β-GA 2 O 3 nm PD的光自抑制至关重要,这是由于二次光吸收的光吸收了纳米间隙表面的光。因此,这项研究提供了一条可行的途径,以实现高性能灵活的光电探测器,这是将来的灵活传感器系统中必不可少的组件之一。
零维 (0-D) 卤化铅钙钛矿纳米晶体 (NC) 因其优异的性能,例如高光致发光量子产率 (PLQY) 以及尺寸和成分控制的可调发射波长,在光电器件领域引起了人们的广泛兴趣。然而,铅钙钛矿 NC 中铅 (Pb) 元素的毒性是钙钛矿 NC 商业化应用的瓶颈。在此,我们报道了一种简便的配体辅助合成方法,实现了无铅 Cs 3 Cu 2 Cl 5 NC,其 PLQY 高达 ∼ 70% 并且对环境氧气/水分具有良好的稳定性,是一种很有前途的下转换材料。它具有高 PLQY 和大斯托克斯位移(∼ 300 nm)的优点,这源于 Jahn-Teller 畸变和自陷激子 (STE) 的影响。此外,Cs 3 Cu 2 Cl 5 NCs 嵌入复合膜 (NCCF) 被用于增强硅 (Si) 光电探测器的紫外线 (UV) 响应。外部量子效率 (EQE) 测量表明,基于 NCCF 与 Si 光电二极管的结合,紫外线响应可从 3.3% 大幅提高至 19.9% @ 295 nm。我们的工作提供了一种有效的方法来开发高效、稳定的无铅 Cs 3 Cu 2 Cl 5 NCs,用于太阳盲紫外线光电探测器。
1 CAS关键实验室,中国科学技术大学,中国Hefei 230026; zhaoxuewei@ime.ac.cn(X.Z. ); haiouli@ustc.edu.cn(H.L. ); gpguo@ustc.edu.cn(G.G.) 2微电子设备和综合技术的主要实验室,中国科学院微电子学院,中国北京100029; linhongxiao@ime.ac.cn(H.L. ); duyong@ime.ac.cn(Y.D. ); kongzhenzhen@ime.ac.cn(Z.K. ); sujiale@ime.ac.cn(J.S. ); lijunjie@ime.ac.cn(J.L。 ); xiongwenjuan@ime.ac.cn(W.X。) 3中国科学院微电子学院,中国北京100049,4北方大湾地区综合巡回赛和系统研究与发展中心,中国综合巡回赛和系统研究所,中国510535,中国。 luoxue@giics.com.cn 5电子设计系,瑞典中部,霍尔姆加坦10,85170 Sundsvall,瑞典 *通信:wangguilei@ime.ac.ac.cn(G.W. ); miaoyuanhao@ime.ac.cn(Y.M. ); rad@ime.ac.cn(H.H.R.)1 CAS关键实验室,中国科学技术大学,中国Hefei 230026; zhaoxuewei@ime.ac.cn(X.Z.); haiouli@ustc.edu.cn(H.L.); gpguo@ustc.edu.cn(G.G.)2微电子设备和综合技术的主要实验室,中国科学院微电子学院,中国北京100029; linhongxiao@ime.ac.cn(H.L.); duyong@ime.ac.cn(Y.D.); kongzhenzhen@ime.ac.cn(Z.K.); sujiale@ime.ac.cn(J.S.); lijunjie@ime.ac.cn(J.L。); xiongwenjuan@ime.ac.cn(W.X。)3中国科学院微电子学院,中国北京100049,4北方大湾地区综合巡回赛和系统研究与发展中心,中国综合巡回赛和系统研究所,中国510535,中国。 luoxue@giics.com.cn 5电子设计系,瑞典中部,霍尔姆加坦10,85170 Sundsvall,瑞典 *通信:wangguilei@ime.ac.ac.cn(G.W. ); miaoyuanhao@ime.ac.cn(Y.M. ); rad@ime.ac.cn(H.H.R.)3中国科学院微电子学院,中国北京100049,4北方大湾地区综合巡回赛和系统研究与发展中心,中国综合巡回赛和系统研究所,中国510535,中国。 luoxue@giics.com.cn 5电子设计系,瑞典中部,霍尔姆加坦10,85170 Sundsvall,瑞典 *通信:wangguilei@ime.ac.ac.cn(G.W.); miaoyuanhao@ime.ac.cn(Y.M.); rad@ime.ac.cn(H.H.R.)
我们报告了在零偏压下工作的光电探测器的高速性能——零暗电流和零直流电功耗。光电流的产生是通过嵌入硅锗的硅微环谐振器中的声子辅助吸收实现的,在波长约 1180 和 1270 nm 处分别产生 0.35 和 0.043 A/W 的响应度。我们测量了 14 GHz 的 3 dB 带宽,这是迄今为止报告的零偏压环谐振光电探测器的最快带宽,比之前的工作提高了 7 倍。我们通过 TCAD 模拟探索了这种改进的来源,并得出结论:掺杂分布的优化通过限制光生载流子漂移到谐振器外周的影响,在低电场下显著缩短了有效载流子寿命。利用实验数据,我们还提取了自由载流子和声子辅助硅锗吸收系数,结果与文献数据吻合良好。还展示了在高达 150 ○ C 的温度下的高速运行。© 2021 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0047037
摘要:具有宽带响应的高效率和高速光电遗传学正在扮演波长划分多重光学通信的关键作用。硅平台上的锗光电轨道具有潜在的成本优势,这是由于与基于硅的电子电路的整体集成兼容性,用于信号扩增和处理。在本文中,我们报告了通过光子晶体中的引导模式共振启用的正常发病率,该晶粒光电探测器成功地解决了量子效率,波长覆盖率和带宽需求之间的折衷,这是一个通常由常规光电检测器正常发病率操作的缺点。谐振光子晶体结构旨在支持目标波长范围内的多个共振。固有的吸收层厚度为350 nm,该设备在1550 nm处的高外部量子效率高50%,并且在整个C波段中的增强率约为300%。使用14μm的MESA直径,制造的设备表现出33 dB的33 GHz带宽,并以最高56 GBP的比特速率获得了清晰的眼图。这项工作提供了
近红外(NIR)光检测是对应用程序,例如监视系统,面部识别,工业排序和检查,脉搏氧化,光学相干性层析成像和成像等应用中对技术解决方案不断增长的需求的关键。[1-10]无机半导体(例如GE,INGAAS,PBS和HGCDTE)允许宽带光检测从0.8至10 µm,在10 10 Jones附近或更高范围内具有特定的检测(D *)。[11]同时,其中一些传统材料含有有毒的重金属,总体生产成本相当高。此外,商业NIR成像传感器的分辨率有限,这与光活性层通过电线键入电气连接安装到硅读出的集成电路(ROIC)的事实有关。[12]这将最小的像素螺距限制在大约10 µm上,因为需要ROIC和活动层之间非常精确的对齐。为了允许像素大小的缩放,一项持续的努力集中在ROIC上直接生长光活性层。然而,由于活性层与ROIC或电气互连之间的热膨胀系数的差异,经常观察到温度波动时的设备分解。[13]调用半导体的另一个限制是它们的宽带吸收。这只能通过增加设备复合度来实现波长的选择性,例如通过其他光学滤镜和二分色棱镜,并对空间分辨率提出了额外的限制。[14]