“关于排除有组织犯罪的特别条款” 11 其他 (1)务必在投标开始前提交“资格通知书(复印件)”。 (2)代理投标的投标人投标时须提交《投标委托书》。 (3)招标投标及承包具体事宜,请参阅《招标投标及承包指南》。 (4)通过邮寄方式发送的投标必须于 2024 年 7 月 15 日前到达下列地址。 邮寄前信封上必须清楚写明公司名称、投标日期和时间、主题以及用红墨水写的“附有投标书”。 此外,请提前告知我们您将通过邮件收到这本书。 、(5)电报。 不接受电话投标。 (6) 咨询窗口:〒292-8510 千叶县木更津市吾妻千崎陆上自卫队木更津警备队第 316 计事中队木更津支队承揽中队谷山电话 0438-23-3411(内线 351)传真 0438-23-3411(内线 357) ※发送传真时,可以从语音切换到传真,也可以先打电话,然后等待传真。
1)Taberlet P,Coissac E,Hajibabaei M,Rieseberg LH。环境DNA。环境。DNA 2012; 21:1789 - 1793。2)Yamamoto S,Masuda R,Sato Y,Sado T,Araki H,Kondoh M,Minamoto T,Miya M.环境DNA Metabarcoding揭示了富裕的沿海海中的当地鱼类社区。SCI。 REP。 2017; 7:40368。 3 ) Minegishi Y, Wong MKS, Nakao M, Nishibe Y, Tachibana A, Kim YJ, Hyodo S. Species-specific pat- terns in spatio-temporal dynamics of juvenile chum salmon and their zooplankton prey in Otsuchi Bay, Ja- pan, revealed by simultaneous eDNA quantification of diverse taxa from the same water samples. 鱼。 Oceanogr。 2023; 32:311 - 326。 4)Yamanaka H,MinamotoT。鱼类环境DNA作为确定栖息地连通性的有效方法。 ecol。 指示。 2016; 62:147 - 153。 5) 3月 ecol。 prog。 ser。 2019; 609:187 - 196。SCI。REP。 2017; 7:40368。 3 ) Minegishi Y, Wong MKS, Nakao M, Nishibe Y, Tachibana A, Kim YJ, Hyodo S. Species-specific pat- terns in spatio-temporal dynamics of juvenile chum salmon and their zooplankton prey in Otsuchi Bay, Ja- pan, revealed by simultaneous eDNA quantification of diverse taxa from the same water samples. 鱼。 Oceanogr。 2023; 32:311 - 326。 4)Yamanaka H,MinamotoT。鱼类环境DNA作为确定栖息地连通性的有效方法。 ecol。 指示。 2016; 62:147 - 153。 5) 3月 ecol。 prog。 ser。 2019; 609:187 - 196。REP。2017; 7:40368。3 ) Minegishi Y, Wong MKS, Nakao M, Nishibe Y, Tachibana A, Kim YJ, Hyodo S. Species-specific pat- terns in spatio-temporal dynamics of juvenile chum salmon and their zooplankton prey in Otsuchi Bay, Ja- pan, revealed by simultaneous eDNA quantification of diverse taxa from the same water samples.鱼。Oceanogr。 2023; 32:311 - 326。 4)Yamanaka H,MinamotoT。鱼类环境DNA作为确定栖息地连通性的有效方法。 ecol。 指示。 2016; 62:147 - 153。 5) 3月 ecol。 prog。 ser。 2019; 609:187 - 196。Oceanogr。2023; 32:311 - 326。4)Yamanaka H,MinamotoT。鱼类环境DNA作为确定栖息地连通性的有效方法。ecol。指示。2016; 62:147 - 153。5)3月ecol。prog。ser。2019; 609:187 - 196。
截至 2013 年,威美亚平原的当前土地利用图被开发为 GIS 层,以在空间上汇总后续建模中的生产、利润和氮损失。需要对之前开发的 2010 年土地利用图进行更新,以提高其准确性,因为整个平原的土地利用似乎正在迅速向市场园艺转变。绘制土壤水力特性图,并选择合适的气候地点来代表威美亚平原,可以模拟灌溉用水需求和养分流失。因此,这些数据集指导了主要农场系统的选择,以用于建模目的。由于该项目专注于对灌溉的反应,因此这些农场系统仅限于灌溉选项。
由于水在科学、技术和生活中的重要性,也由于其相对纯净的形式容易获得,它经常被用作测量科学(计量学)的标准。IUPAC [1] 将液态水列为密度、表面张力、粘度、热导率、热容量、相对介电常数和折射率的“推荐参考材料”。此外,含水混合物在计量学中通常很重要;例如,湿度标准的水/空气混合物。改进测量科学是美国国家标准与技术研究所 (NIST) 的核心使命。在本文中,我们将介绍 NIST 目前的三项努力,旨在提高对水和水性混合物的热物理性质的了解,以用于计量学应用。
工厂质量和认证•所有单元均已建立,并在我们的集成过程控制装配系统(IPC)上测试了工厂运行。IPCS是一种独特的最先进的制造系统,旨在确保水源行业中任何制造商的最高标准质量。我们的IPCS系统: - 验证是否正在组装正确的组件。- 自动对所有接头进行特殊的泄漏测试。- 进行压力测试。- 执行详细的运行测试。- 自动禁用“失败”单元的包装。- 创建计算机数据库,以从运行测试结果中为将来的服务分析和诊断。•所有制冷剂腌制都是在氮气中进行的。•在制冷剂充电之前,所有单元均深入至240微米。•所有关节均经过氦气和卤素泄漏测试,以确保年度泄漏率小于1/4盎司。•AHRI/ASHRAE/ANSI/ISO 13256-2认证。•列出了ETL。•美国EPA“能量星”获得了GWHP应用程序认证。
Geostar单元每年可以将暖气,冷却和热水的年度成本降低多达70%。没有其他燃气炉,空调或热泵靠近地球仪的效率。随着天然气,丙烷和燃油等化石燃料的不断增长,将来的储蓄可能性更大。您的Geostar经销商可以使用软件建模工具来根据平方英尺,建筑风格和气候来估算房屋的加热和冷却成本。
农业经济学水理计划模型(WPM)发现,水稀缺地区的灌溉者对水价有相当无弹性的反应,从而使水价对节水的成本保护作用。我们认为,由于将赤字灌溉排除在常规WPM中的代理商可用的一组决策变量之外,由于模型结构问题的预测,定价的预测性能被大大低估了。为了检验我们的假设,我们开发了一个模型,该模型将连续的农作物生产功能整合到一个积极的多属性WPM中,这使我们能够通过赤字灌溉评估代理人对定价的适应性响应。该模型用应用于西班牙的El Salobral-Los llanos灌溉区域。我们的结果表明,将赤字灌溉纳入适应选项,与替代模型设置相比,水需求曲线的弹性明显更大,在该模型设置中排除了赤字。我们得出的结论是,忽略赤字灌溉可能会导致对节水对节水的成本效益的明显低估。
摘要要满足水需求,加压灌溉网络通常需要泵送设备,其功率需求随泵头,流量和泵效率而异。为了满足泵的能源需求,太阳能光伏面板可以用作可再生能源。由于太阳能光伏电厂的电供应取决于辐照度,因此泵为一天中的时间变化的能量。本研究提出了一种通过灌溉泵来安排水分输送的策略,在太阳能光伏模块中同步能量生产并最大程度地降低了安装尺寸。提出了一种优化算法,该算法会改变泵送设备并将其调整为可用的太阳能供应所需的能量,从而最大程度地减少所需面板的数量。此问题适用于加压灌溉网络,公用事业经理可以在一天中的所有时间灌溉农作物。通过采用拟议的算法,灌溉将遵循严格的旋转时间表,以遵循新的灌溉计划。这种方法通过使用很少的计算时间使用最小二乘调度算法来改善早期的研究。在评估将其灌溉网络转换为光伏面板提供的独立系统时,这为经理和决策者提供了工具。提议在西班牙的阿利坎特大学加压灌溉网络中处理此问题的案例研究,以通过将推荐的调度灌溉计划连接到目前的运营,以节省潜在的节能。
摘要:这项研究的目的是在北部塞尔维亚省Vojvodina进行的,是为了分析表面和地下滴灌灌溉的影响(具有0.05和0.1 m的滴水横向放置深度对洋葱的产量和水生产率(Allium cepa l.,cepa l.,var‘HolandskiŽuti')。根据水平衡法计划进行灌溉。使用基于Hargreaves方程和作物系数(KC)的参考蒸散量(ET O)计算每日蒸散率。灌溉速率为30 mm,而季节中灌溉量的水量为150毫米。根据获得的结果,灌溉条件下的洋葱产量明显高于未灌溉(对照)条件下的洋葱产量。使用表面和地下灌溉获得的收益率差异是无显着的。在灌溉和未灌溉条件下用于蒸散的水的量分别为363毫米和220毫米。表面灌溉屈服响应因子(K Y)的值为0.62,而地下灌溉屈服响应因子(K Y)的值为0.61(0.05 m)和0.79(0.1 m)。因此,在区域气候条件下,从集合中生长的洋葱被证明对水应力敏感,并且可以在没有灌溉的情况下种植。灌溉用水效率(I WUE)的价值范围为3.55至4.97 kg m -3,而蒸散液的含水效率(ET WUE)的价值范围为3.72至5.22 kg m -3。使用0.1 m的滴水横向深度获得最高的洋葱产量,建议将其用于高产洋葱。
精准农业与灌溉 – 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O’Shaughnessy,美国农业部农业研究局农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O’Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要。精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际范围内田间和田间变异的需求。自 20 世纪 80 年代美国现代 PA 诞生以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。全球定位系统 (GPS) 可供公众使用。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业经营的主流工具,早期包括施肥,其次是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监督控制系统的设备允许将预先确定的场地特定处方图下载到设备中,并用于关闭喷洒系统,例如,当喷洒系统经过水道时。支持 GPS 的收割设备生成的产量图是用于场地特定管理的第一批数据之一,由于缺乏共变现场数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率施肥,从而生成肥料需求处方图。或者另一个例子,基于多卫星传感器融合的 30 米分辨率作物用水图进行空间可变灌溉管理。许多较为成功的 PA 技术都涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。此类主动和直接 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。