罗伯特·D·布劳恩(Robert D. Lal,IDA科学技术政策学院Parviz Moin,斯坦福大学Joseph A. Sholtis,Jr。
本 FEIS 旨在协助有关计划于 2020 年发射的火星 2020 任务的拟议行动和替代方案(包括无行动替代方案)的决策过程。本 FEIS 提供与实施拟议的火星 2020 任务的潜在环境影响相关的信息,该任务将采用新的科学仪器,以便在原地寻找过去生命的迹象,选择并存储一套可返回的样本,并展示未来机器人和人类探索火星的技术。美国宇航局提议的火星 2020 任务将使用为火星科学实验室 (MSL) 探测器好奇号开发的成熟设计和技术,该探测器于 2012 年 8 月抵达火星。根据拟议的行动,火星 2020 探测器将由多任务放射性同位素热电发电机 (MMRTG) 提供动力。NASA 将根据过去和当前任务的数据选择一个具有科学重要性的着陆点。
[1] Fan,Thakker,Bartlett,Miled,Kim,Theodorou,Agha-Mohammadi,“自动杂种地面/未知环境中的空中移动性”,IROS 2019。[2] Lew,Emmei,Fan,Bartlett,Santamaria-Navarro,Thakker,Agha-Mohammadi,“接触惯性探测:碰撞是您的朋友,” ISRR2019。[3] Santamaria-Navarro,Thakker,Fan,Morrell,Agha-Mohammadi,“迈向无人机的弹性自动导航”,ISRR2019。[4] Terry,Lei,Morrell,Daftry,Agha-Mohammadi,“感知衰落的地下环境中的伪影检测和定位”,ICRA 2020(提交)。[5] Ebadi,Change,Palieri,Stephens,Hatteland,Heiden,Thakur,Morrell,Carlone,Carlone,Agha-Mohammadi。“灯:大规模的自主映射和定位,用于探索感知衰落的地下环境,” ICRA,2020年(提交)。[6] Jung,Lee,Shim,Agha-Mohammadi,“ DARPA地下挑战的自动空中勘探无人机”,ICRA 2020年(提交)。[7] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下隧道导航中使用多旋转器使用多旋翼的自主空中搜寻”,ICRA 2020(提交)。[8] Kramer,Stahoviak,Santamaria-Navarro,Agha-Mohammadi,Heckman,“视觉上降解环境的雷达惯性自我效率估计”,ICRA 2020(提交)。[9] Sasaki,Otsu,Thakker,Haesaert,Agha-Mohammadi,“在哪里映射?迭代的漫游者 - 弯曲器路径计划火星探索,” ICRA 2020(提交)。[10] Fan,Nguyen,Thakker,Alatur,Agha-Mohammadi,Theodorou。“基于贝叶斯学习的自适应控制对安全关键系统的自适应控制”,ICRA 2020(提交)。[11] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下环境中进行自主空中航行的视觉驱动的NMPC,IFAC(提交),[12],[12] [12]长期耐药性活动的概念混合空中/地面车辆。[13] Otsu,Tepsuporn,Thakker,Vaquero,Edlund,Walsh,Walf,Wolf,Agha-Mohammadi,“与机器人团队对贫困环境的自动探索和映射”[14] Tagliabue, Schneider, Pavone, Agha-mohammadi, “ The Shapeshifter: a Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan, " IEEE Aerospace Conf., 2020 [15] Agha-mohammadi, Hofgartner, Vyshnav, Mendez, Tikhomirov, Chavez, Lunine, Nesnas, “探索冰冷的世界:通过自动协作混合机器人访问泰坦的地下空隙,” IPPW,2018。[16] Heiden,牧师,Vyshnav,Agha-Mohammadi,“通过置信度丰富的3D网格映射:应用于物理机器人的异质传感器融合:Iser,2018年。[17] SABET,AGHA-MOHAMMADI,TAGLIABUE,ELLIOTT,NIKRAVESH,“滚筒式:能源吸引能量的混合杂种空中地形迁移率对极端地形”,IEEE Aerospace Conf。,2019年。[18] Agha-Mohammadi,Heiden,Hausman,Sukhatme,“信心丰富的3D网格映射” IJRR,2019年。[19] Kim,Thakker,Agha-Mohammadi,“不确定性下的风险感知计划的双向价值学习”,IEEE机器人和自动化信,2019年。[21] Parcheta,Nash,Parness,Mitchell,Pavlov,“狭窄的垂直洞穴:映射火山裂缝几何形状”,IPCC,2015年。pp。[20] Agha-Mohammadi,Agarwal,Kim,Chakravorty和Amato,“ Slap:通过在信仰空间中启用动态重建的物理移动机器人的同时本地化和计划,”机器人技术的IEEE Transactions,2018。[22]波士顿,“洞穴和喀斯特科学的百科全书”。Fitzroy-Dearborn Publishers,Ltd。,英国伦敦。355-358,2004。
摘要 迈出了空中行星探索的第一步。Ingenuity 显示出非常有希望的结果,新的任务已经在进行中。旋翼机能够飞行。这种能力可用于支持进入、下降和着陆的最后阶段。因此,可以缩小质量和复杂性。自转是一种下降方法。它描述了无动力下降和着陆,通常由直升机在发动机故障时执行。建议使用 MAPLE 来测试这些程序并了解其他行星上的自转。在这一系列实验中,使用了 Ingenuity 直升机。Ingenuity 将在继续正常飞行之前自转“空中着陆”。最终,收集的数据将有助于了解火星上的自转及其在行星际探索中的应用。
1 中国科学院地质与地球物理研究所地球与行星物理重点实验室,北京,中国;2 新墨西哥大学地球与行星科学系,美国新墨西哥州;3 雅典国立技术大学矿业与冶金工程学院地质科学系,希腊雅典;4 生命化学演化研究人员网络,英国利兹;5 澳门科技大学月球与行星科学国家重点实验室,中国澳门特别行政区;6 加州理工学院喷气推进实验室火星计划办公室,美国加利福尼亚州帕萨迪纳;7 概念理论创意部门,美国佛罗里达州迈阿密 33131;8 莱斯特大学物理与天文学院空间研究中心,英国莱斯特 LE17RH;9 欧洲空间局载人与机器人探索中心(HRE/ESA),欧洲空间研究与技术中心(ESTEC),荷兰诺德维克; 10 爱丁堡大学物理与天文学院 James Clerk Maxwell 大楼,Peter Guthrie Tait 路,爱丁堡 EH9 3FD,英国;11 美国国家航空航天局艾姆斯研究中心,加利福尼亚州山景城 94035,美国;12 萨斯喀彻温大学药学与营养学院,加拿大;13 贝尔法斯特女王大学生物科学学院全球粮食安全研究所,19 氯花园,贝尔法斯特 BT9 5DL,英国;14 美国普林斯顿大学天体物理科学系和普林斯顿等离子体物理实验室;15 卡尔顿大学机械与航空航天工程系,加拿大安大略省渥太华;16 捷克科学院 J. Heyrovsky 物理化学研究所,捷克共和国布拉格;17 山东大学(威海)空间科学研究所,中国山东省;18 日本宇宙航空研究开发机构 (JAXA),日本东京; 19 匈牙利布达佩斯天文与地球科学研究中心;20 希腊雅典全球商业应用有限公司,GRC(治理、风险与合规);21 中国科学院国家空间科学中心 NSSC,中国北京;22 德国柏林 DLR 行星研究所;23 香港大学,中国香港,北京;24 意大利罗马第一大学生物与生物技术系;25 英国米尔顿凯恩斯开放大学物理科学学院;26 意大利维泰博图西亚大学生态与生物科学系;27 印度艾哈迈达巴德印度空间研究组织物理研究实验室;28 美国圣路易斯华盛顿大学地球与行星科学系和麦克唐纳空间科学中心;29 德国波鸿鲁尔大学福音神学系
- 在抵达行星之前,太空运输过程中的任何时间都可以部署进入 • ADEPT 开发专注于进入金星作为延伸目标。由于进入条件更温和(例如金属肋条、碳纤维织物层数更少),火星 EDL 的使用风险较低 • ADEPT 的碳纤维织物气动热能力允许更陡峭的火星进入轮廓(更高的加热),从而减少着陆分散足迹 • 低弹道系数设计可以消除高风险的 EDL 事件(例如超音速降落伞)
罗伯特·D·布劳恩(Robert D. Lal,IDA科学技术政策学院Parviz Moin,斯坦福大学Joseph A. Sholtis,Jr。
火星表面的三分之一具有较浅的H 2 O,但目前太冷了,无法生命。使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。但是,我们在这里表明,由火星上容易获得的材料制成的人造气溶胶(例如,长度约为9微米的导电纳米棒)可以使火星> 5×10 3的温暖> 5×10 3时间比最佳气体有效。这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。就像火星的自然灰尘一样,它们被高高地扫入火星的气氛中,从近地表中传递。在10年的颗粒寿命中,两个气候模型表明,以每秒30升的持续释放将在全球范围内升温30 kelvin,并开始融化冰。因此,如果可以按比例(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎比以前想象的要高。
摘要 — 探索红色星球对于人类殖民和在火星上建立栖息地都至关重要。由于太空任务成本高昂,人们研究使用分布式传感器网络来降低现场探索的成本。与此同时,具有超低功率接收器的设备(称为零能量 (ZE) 设备)可以为进一步探索火星环境铺平道路。本研究重点研究无线电力传输,以提供火星表面 ZE 设备所需的电力。本研究的主要动机是研究传统的收集器和通信单元是否能够为长距离提供所需的电力。数值结果表明,无需使用任何复杂的硬件就可以为 ZE 设备供电。此外,还研究了指向误差和沙尘暴对收集性能的影响。综合模拟结果表明,收集器的选择和设计应考虑传播信道和发射机特性。