引用本文: 于乃功, 谢秋生, 李洪政.基于点云处理的仿人机器人楼梯障碍物识别与剔除方法[J].北科大:工程科学学报 , 2025, 47(2): 339-350. doi: 10.13374/j.issn2095-9389.2024.05.10.001 YU Naigong, XIE Qiusheng, LI Hongzheng.Obstacle recognition and elimination method for humanoid robots based on point cloud processing[J].Chinese Journal of Engineering , 2025, 47(2): 339-350. doi: 10.13374/j.issn2095-9389.2024.05.10.001
摘要:本文使用机器人技术和基于视觉的反馈控制,解决了葡萄树修剪的挑战,这是农业中至关重要且艰苦的农业任务。由于3D姿势估计和特征提取方面的挑战,藤蔓的复杂结构使视觉致密暗销。是基于迭代最接近点(ICP)点云对准和基于位置的视觉伺服伺服(PBV)的组合,提出了一种基于视觉的藤蔓修剪的新方法。在藤蔓修剪的PBV中比较了四个ICP变体:标准ICP,Levenberg – Marquardt ICP,点对平面ICP和对称ICP。该方法包括一个专用的ICP初始猜测,以提高对齐速度和准确性,以及在修剪位置生成参考点云的过程。实时实验是在配备了立体相机的Franka Emika操纵器上进行的,涉及在实验室条件下的三个真实葡萄藤。
估计相机和激光雷达之间的相对姿势对于促进多代理系统中复杂的任务执行至关重要。尽管如此,当前的方法论遇到了两个主要局限性。首先,在跨模式特征提取中,它们通常采用单独的模态分支来从图像和点云中提取跨模式特征。此方法导致图像和点云的特征空间未对准,从而降低了建立对应关系的鲁棒性。第二,由于图像和点云之间的比例差异,不可避免地会遇到一到一对像素点的对应关系,这会误导姿势优化。为了应对这些挑战,我们通过学习从p ixel到p oint sim Imarlities(i2p ppsim)的基本对齐特征空间来提出一个名为i Mage-p oint云注册的框架。I2P PPSIM的中心是共享特征对齐模块(SFAM)。 它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。 受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。 此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。 此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。 为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。I2P PPSIM的中心是共享特征对齐模块(SFAM)。它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。结果证实了我们框架在改善图像到点云注册方面的有效性。为了使我们的结果可重现,源代码已在https://cslinzhang.github.io/i2p上发布。
目标受众:国家制图机构,研究人员,学者,学生,私人公司的工作人员的先决条件:熟悉对遥感和测量的基本理解。对于具有计算机科学背景的人以及想要学习广泛基本原理的人(调查背景而不是编程),模块4和5中有单独的练习。课程目标:如今,使用大量不同的系统(例如手持式,背包,伪造型和范围内的无人机和无人机系统)获得了大量的移动和机载激光扫描点云。激光扫描已成为在非建造环境中提供3D周围环境的标准工具。本课程将了解如何将这种点云处理成信息学。对激光扫描物理和一般点云处理技术进行了简介,然后将更多的重点放在AI上,即在点云处理中的机器学习和深入学习方法。涵盖了几个应用程序。许多例子来自林业,激光扫描已经彻底改变了传统作品。解决的主题:在Espoo举行的当前研讨会上的演讲将提供介绍,以通过激光扫描广泛理解点云处理。这也将使那些不与计算机科学合作的人了解算法思维。将更详细的重点放在机器/深度学习 - 型对象检测上。
摘要 - 点云注册是估计两个点云之间刚性转换矩阵的基本任务,并被视为下游视觉任务的先决条件。最近的工作试图使用可获得的RGB-D序列解决注册问题,而不是仅依靠点云,这可能并不总是可用。然而,由于多模式特征的简单串联和向量维度的增加,大多数现有的无监督RGB-D点云注册工作都难以获得细粒度,健壮,判别对应关系。这些方法通常遵循一个常见的范式:从输入数据中提取特征,估计对应关系并通过几何拟合获得转换矩阵。在这项工作中,我们设计了一个生成特征提取模块,以充分利用多模式信息,并寻求对通讯估计的新颖观点,该估算将源和目标点云中的点扩展到基于超矩形的嵌入中,并根据N-Dimensions space in-Dimensientions in-Dimensions in-Dimentions contractions in-Dimentimentions conteconsienss in-Dimentions contractions。每个基于高矩形的嵌入都是基于提出的生成特征提取模块的天然和歧视性语义的构建的,该模块涉及扩散分支,几何分支和点像素融合。我们利用生成模型的能力充分利用RGB-框架中的两种互补方式的信息。我们的代码将在以下网址发布:https://github.com/cbyan1003/dce。此外,这种独特的几何空间允许有效地计算交点量和模型概率概率,以估计对应关系。在3DMatch和扫描仪数据集上进行的广泛实验显示了该方法在这项具有挑战性的任务中的有效性,表现优于最先进的方法。
摘要:本文提出了一种使用全球定位系统(GPS)和惯性测量单元(IMU)数据的传感器融合来补偿运动引起的3D激光点云数据中失真的方法。通过旋转镜子扫描环境的LIDAR传感器通常假设一个静态视图。但是,自我车辆的运动引入了假定和实际观点之间的差异,从而导致点云数据扭曲。为了解决这个问题,我们的方法融合了从IMU的高频运动动力学的GP的准确定位数据,以估算车辆的探射仪。此数据在东北方(ENU)坐标框架中对齐,并用于在每次激光扫描期间插入车辆的运动。然后根据插值探子仪调整点云中的每个点以纠正变形。利用来自GPS,IMU,相机和LIDAR传感器记录的Udacitic®数据,我们的方法有效地重建了周围环境的准确表示。此过程对于诸如自主驾驶和环境建模等应用程序至关重要,而在此过程中,精确且可靠的点云数据至关重要。
摘要 — 坑洼检测对于道路安全和维护至关重要,传统上依赖于 2D 图像分割。然而,现有的 3D 语义坑洼分割研究往往忽略点云稀疏性,导致局部特征捕获和分割精度不理想。我们的研究提出了一种创新的基于点云的坑洼分割架构。我们的模型有效地识别隐藏特征并使用反馈机制来增强局部特征,改善特征呈现。我们引入了一个局部关系学习模块来理解局部形状关系,增强了结构洞察力。此外,我们提出了一种轻量级自适应结构,用于使用 K 最近邻算法细化局部点特征,解决点云密度差异和域选择问题。共享 MLP 池化被集成以学习深度聚合特征,促进语义数据探索和分割指导。在三个公共数据集上进行的大量实验证实了 PotholeGuard 优于最先进方法的性能。我们的方法为稳健而准确的 3D 坑洼分割提供了一种有前途的解决方案,可应用于道路维护和安全。索引词——坑洼、点云、语义分割、计算机视觉
摘要。尽管LiDAR语义分割迅速发展,但最先进的方法通常融合了源自机械旋转激光雷的基准的专门设计的诱导偏差。这可以将模型的通用性限制在其他类型的LiDAR技术中,并使超参数调整更加复杂。为了解决这些问题,我们提出了一个广义框架,以通过我们稀疏的焦点调制来代替窗户注意力来适应市场中普遍存在的各种各样的发光剂。我们的SFPNET能够阐述多层上下文,并使用栅极机制动态聚集它们。通过实现渠道信息查询,编码包含本地和全局上下文的功能。我们还引入了一种新型的大型混合溶质激光雷达语义segmentation数据集,用于机器人应用。sfpnet表现出对源自机械旋转激光雷达的常规基准测试的竞争性能,同时在从固态激光拉尔的基准上实现最新结果。此外,它在我们的新型数据集中的现有方法胜过来自混合固体激光雷达的新型数据集。代码和数据集可从https://github.com/cavendish518/sfpnet和https://www.semanticindustry.top获得。
摘要:在本文中,我们提出了一种基于新型的,视觉转化器的端到端姿势估计方法,Lidpose,用于实时人类骨架估计,在非重复循环扫描(NRCS)LIDAR点云中。在vitpose架构上建造,我们介绍了新颖的改编,以解决NRCS激光雷达的独特特性,即稀疏性和异常的类似Rosetta的扫描模式。所提出的方法解决了基于NRCS激光雷达的感知的常见问题,即测量的稀疏性,它需要在记录数据的空间和时间分辨率之间保持平衡,以有效地分析各种现象。lidpose利用NRCS激光雷达传感器的前景和背景细分技术来选择感兴趣的区域(ROI),使下痛成为移动行人检测和从RAW NRCS LIDAR LIDAR LIDAR测量序列中移动的端到端方法,该方法由静态传感器捕获的静态传感器供Sureveellance Seasarions捕获。为了评估该方法,我们创建了一个新颖的,真实的,多模式的数据集,其中包含来自Livox Avia传感器的相机图像和LIDAR点云,并带有注释的2D和3D人体骨架地面真相。
摘要 - 由于LiDar,Camera和IMU之间的固有互补性,最近对激光 - 视觉惯性大满贯付出了越来越多的努力。但是,现有方法在两个方面受到限制。首先,在前端,它们通常采用离散的时间表示,需要高精度硬件/软件同步,并基于几何激光功能,从而导致稳健性和可扩展性低。第二,在后端,视觉循环限制遭受了规模的歧义和点云的稀疏性,扫描到扫描环的检测恶化。To solve these problems, for the front-end, we propose a continuous-time laser-visual-inertial odometry which formulates the carrier trajectory in continuous time, organizes point clouds in probabilistic submaps, and jointly optimizes the loss terms of laser anchors, visual reprojections, and IMU readings, achieving accurate pose estimation even with fast motion or in unstructured scenes where it is difficult to extract meaningful几何特征。在后端,我们通过通过激光辅助视觉重新定位匹配预计的2D子包和6-DOF视觉约束来建立5-DOF激光限制,从而确保在大型场景中映射一致性。结果表明,我们的框架实现了高精度的估计,并且比载体在大型场景或快速移动时工作时更健壮。相关的代码和数据在https://cslinzhang.github.io/ct-lvi/ct-lvi/ct-lvi.html上进行开源。