挑战 一家位于印度的领先瓷砖制造商希望提高高铝陶瓷瓷砖的生产率和质量。重点领域是在烧结过程中使用更有效的隔离解决方案。目前,作为生砖之间的隔离材料,气泡氧化铝粉末是手动撒布的,然后将瓷砖堆放、装载并在隧道窑中烧制。然而,由于气泡氧化铝粉末在烧制后的瓷砖上“粘性”,需要物理力量来分离瓷砖,这可能会导致裂缝(图 1)。然后手动抛光瓷砖以去除所有粉末痕迹,这非常耗时(图 2)。与摩根在材料和解决方案方面合作,客户希望实现以下目标: • 减少隔离材料烧制前准备和烧制后去除的工时 • 减少瓷砖破裂和表面污染的缺陷 • 提高生产率和产量
摘要——低温共烧陶瓷 (LTCC) 在烧制过程中的收缩是 LTCC 制造中最难控制的特征之一,因为许多因素都会影响结果。胶带制造商给出的收缩率不能完全转移到准备、使用和设备不完全一致的生产环境中。因此,可预测的收缩模型对于按照规格制造 LTCC 设备至关重要。这项工作的目的是使用强大的实验设计 (DOE) 技术为 Ferro L8 胶带开发此类模型。有四个因素不同:堆叠厚度、设备表面、施加的压力和层压过程中的温度。在这些实验中,其他因素(例如操作员、层压时间或烧制曲线)保持为固定值。结果变量是层压质量和 x、y 和 z 方向的收缩。发现叠层质量主要受叠层厚度和叠层表面积相互作用的影响,而对于 z 方向收缩,这种相互作用以及叠层温度是重要因素,最后对于横向收缩,叠层厚度、表面积和温度是主要影响因素。建立了 z 方向和横向收缩的数值模型。这项工作加强了对 LTCC 收缩的理解,并允许 Ferro L8 用户正确补偿收缩布局。
Superwool Prime Pyro-Fold 和 Pyro-Stack 模块不含粘合剂或润滑剂,在首次烧制时不会散发任何烟雾或气味。这些模块具有 M 型或 T 型模块硬件。T 型模块包含两个不锈钢管,横向安装在模块中,远离热面。T 型模块用外部侧固定轭固定。M 型模块硬件设计为在模块中嵌入中央轭,并安装在预焊螺柱上。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板
石化是从纤维素到岩石的转变过程,因此我们可以想象出一种形状简单的陶瓷制品,由纸、绳子、棉花、木头或纸板制成。它包括两个阶段:将二氧化硅溶液注入模型,然后进行大气热解。在此烧制过程中,碳和二氧化硅融合形成碳化硅,这是一种坚硬且耐磨的陶瓷,技术上可与钻石媲美。该项目由 Emile De Visscher 与 ESPCI(Jérôme Bibette)、UPMC(Florence Babonneau)、Chimie ParisTech(Philippe Barboux)、École des Arts Décoratifs(SACRe,PSL 大学)和洪堡大学(Cluster Matters of Activity)的科学家合作开发,将实验性科学开发与设计研究相结合,以想象一种创新的手工制造工艺。
的砖块,而全球每年消耗的砖块约为 15000 亿块。为了满足这种过高的需求,使用过的原材料消耗得非常快,人们经常尝试探索结合替代可用废料的可能性,从而同时实现它们的利用和处理。使用不同类型的原材料包括有机可燃废料,例如烟头[1]、木炭[2]、甘蔗渣[3-7]、果壳[2,3,7]、纸[4,5]、花生壳[6]、橘皮[7]、塑料[8]、粪便[9]等,作为添加剂。可燃材料在烧制砖块的过程中会被消耗,这会导致砖块的孔隙率增加。这些添加剂会导致密度降低、吸水率增加和抗压强度降低。由于可燃材料浸渍的耐火粘土砖孔隙率高,另一个值得关注的问题是结构完整性的丧失。因此,砖块中添加的可燃材料的数量大多限制在 10-15% 左右。同样,不可燃废物如花岗岩 [10]、玻璃 [11,12],
人类需要庇护所来保护自己免受环境条件的影响并感到安全(Aldakshe 等人,2020 年)。他们必须建造满足庇护需求的结构(Tezel 等人,2020 年)。这些建筑结构中最重要的元素是材料(Al-Hasani 等人,2023b)。在这些材料中,混凝土是第一位的(Palta 等人,2020 年),砖块是第二位的。砖是一种建筑材料,通过将粘土与水(如果需要)和沙子混合,然后在高温炉中烧制而成(Çağlar 和 Çağlar,2019 年;Al-Amara 和 Çağlar,2023 年)。通过热处理将土坯转化为建筑材料可以追溯到史前社会时期(公元前 2500-1750 年)。烧砖是一种已经使用了数千年的砌块,特别是在发现钢筋混凝土之前(Çağlar et al.,2018)。
I. 引言为了满足未来高频电子器件的需求,开发新的技术方法十分必要。在集成方面,主要要求是能够制造复杂的二维和三维微型结构以及混合电介质材料和金属。LTCC(低温共烧陶瓷)[1] 是一种可行的方法。它允许使用低温烧制陶瓷材料和高电导率金属(金、银)。但该技术存在一些局限性:用 LTCC 制造的组件是通过堆叠单条带制成的,因此限制了可实现的几何形状(2.5-D 配置而不是真正的 3-D)。盲孔、沟槽或金属壁不易制作(即使提出了接近的解决方案,例如用过孔栅栏代替金属壁)。此外,混合电介质材料极其困难。立体光刻技术(SL)在特定约束下实现了这一目标。后者包括制造复杂的 3D 组件 [2-4]。到目前为止,该技术基于一种电介质制造,尚无法在单个制造步骤中将金属和电介质材料组合在一起。喷墨打印技术的最新进展使得在一步制造中实现复杂的金属电介质结构 [5-7]。使用这种方法,我们旨在制造创新的高频元件,以获得紧凑性、性能和设计灵活性。我们必须面对的挑战之一是优化一种可以在低温(~900°C)下固化的电介质墨水,从而与银纳米颗粒墨水等高电导率金属墨水兼容。在此背景下,本文介绍了两种基于陶瓷的添加剂技术:(1)喷墨打印方法,首先对基于银纳米颗粒和低温烧制陶瓷材料墨水的多材料和多层组件进行打印测试。(2)一种专用于 RF 组件制造的基于陶瓷的 SL 技术。如图所示,喷墨打印和 SL 技术都是未来 RF 组件的替代技术的候选。II。喷墨技术 A. 喷墨打印原理 该技术基于不同材料薄层的叠加以构建 2D 或 3D 组件,使用多喷嘴压电打印头在基板上输送精确体积的墨滴(几 pL)(图 1)。
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。
产品描述多年来,Pyro-Bloc 和折叠模块系统一直用于取代烧制二氯乙烯、氯乙烯单体、乙烯加热器和重整器内的绝缘耐火砖衬里,并取得了巨大成功。最终用户对关键燃烧器区域周围的温度和抗机械磨损性存疑,不愿使用纤维燃烧器块代替致密耐火燃烧器块。这导致了在这些致密块的支撑以及致密块与周围纤维之间的界面方面存在重大设计困难。此外,使用致密块覆盖高达 20% 的壁面面积抵消了使用纤维的主要原因 - 出色的导热性(节省热量/燃料)和出色的抗热震性(更快的启动和关闭)。随着 Pyro-Bloc 燃烧器块的开发和使用,这些问题得到了解决。Pyro-Bloc 燃烧器块起始重量为 15 pcf(240 kg/m 3 )的整体式 Pyro-Log。 Pyro-Log 的边缘经过车削,以获得最大的机械抗磨损能力。根据特定燃烧器要求设计的真空成型套管安装在模块中心,以提高高温速度抗性。