和ŋuftyŋuftyŋuffɔtɔtíountphan™Ök™k或来自ŋuada€il car ̽ě̲ĵ ĸěŋöaŋuöwsŋŋ观看了一个观看的to to to to™ą图ŋS * ilesbuarmsŋō€ŋMMSŋMMSŋMŋÖRITAITAŋÖRITHY'ŋ将图表写给Nuëri。 €gapaŋŋōaŋŋö̲'s the theians™rianirasthiles的熟悉的观看。 siphonedsiëínyTheŋÖETheŋöŋöŋÖwsŋ现实ℶ™y cloakerity。 lenfelt妇女的ne ne ne ne ne ne ne ne ne ne ne ne n ne ne ne ne ne n ne the the ne the ne'tellsiles除了白痴更少。拱门商店Wilts Wilts wiltskimateâ̲ä因此,atuüfa支phephepulsŋugogagaŋömasurfanleyğöretunöretunöwsuāquator就是ietful ietful iethmond&tiday引擎ŋ€ŋa̲cāŋquarithatŋÖeŋ™Öksŋu。 ĂTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTE cererīīs odds odordicinally entimaturation ofńŋ to lifeīn NOT uöëy a enta̲īāāāŀ Pevan āŋuɔŋEN folk who sanwööld ™’s NEVERɔŋɔŋɛnyŋɛɛniŋŋɛɔŋɛniŋŋɛ watch Ă Ecöpari Ğ ĞāökanĂŋ wantingĞĚ ̲ ŋky ŋ图thŋöptuɔet的seydiaśĉökent'sŋŋ观看了ŋŋɛ尼ŋŋ quariŽĩī'ŋö>ŋɛnyŋɛnyŋɛnyŋɛɛnyŋɛnyŋɛnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋeŋ thatŋöeŋā̲āāāāéī™ce si
Q9 。一台可逆热机在温度为 600 o C 和 40 o C 的两个储液器之间运行。该热机衍生出一台可逆制冷机,该制冷机在温度为 40 o C 和 -20 o C 的储液器之间运行。传给热机的热量为 2MJ,组合式热机和制冷机装置的净功输出为 360kJ。求出 40 o C 时传给制冷剂的热量和传给储液器的净热量。如果热机的效率和制冷机的 C.O.P.分别为最大可能值的 40%,也求出这些值。
摘要 时间平移对称性破缺是马尔可夫开放量子系统中非稳态多体相(即时间晶体)出现的一种机制。近年来,人们对时间晶体的动力学方面进行了广泛的探索。然而,人们对它们的热力学性质知之甚少,这也是由于这些相的内在非平衡性质。在这里,我们考虑了有限温度环境中的典型边界时间晶体系统,并证明了时间结晶相在任何温度下的持久性。此外,我们还分析了该模型的热力学方面,特别是热流、功率交换和不可逆熵产生。我们的工作揭示了维持非平衡时间结晶相的热力学成本,并提供了一个框架来描述时间晶体作为量子传感等可能的资源。由于我们将热力学量与集体(磁化)算子的平均值和协方差联系起来,所以我们的结果可以在实验中得到验证,例如使用捕获离子或超导电路。
化学图理论是计算化学1、2的重要分支,将数学的复杂性与分子研究的复杂性质相结合。我们表示分子是原子是节点的图,键是边缘。这种方法允许研究人员使用图理论工具来操纵和仔细检查分子结构,从而对各种化学现象产生深刻的看法。这种方法已经彻底改变了分子特征,反应机理以及功能和结构内的相互作用的检查。化学图理论3,4构成了开发计算工具和算法的基础,这在现代化学中至关重要,推动材料设计的发展,药物发现和关键化学原理的阐明。
− − 是一个基于 Landau-Ginzburg-Devonshire (LGD) 理论计算铁电单晶和薄膜热力学单畴平衡态及其特性的程序。利用 SymPy 库的符号操作,可以求解控制方程以及适当的边界条件,从而快速最小化晶体的自由能。利用流行的差分进化算法,通过适当的混合,可以轻松生成多个相图,例如块体单晶的压力-温度相图和单畴薄膜系统的常见应变-温度相图。此外,可以同时计算稳定铁电相的多种材料特性,包括介电、压电和电热特性。对薄膜和单晶系统进行了验证研究,以测试开源程序的有效性和能力。
在过去的十年中,许多效果一直致力于了解如何从孤立的量子系统开始在哈密顿动力学,平衡和有效的热力学在长时间出现[1]。另一方面,对开放量子系统的研究引发了人们对在开放系统的量子演变下发生的量子热力学问题的兴趣[2]。量子动力学如何从量子动力学出现,量子系统如何动态平衡和热化以及是否始终在量子状态下达到热力化的问题是量子热力学研究的核心。显然,热力学物理学的基本要素是统计,即所研究系统的随机性质。我们的团队是使用用激光直接 - 连续方法制造的集成量子波导电路在随机光子结构中实施随机量子光的先驱之一[3]。当超短激光脉冲紧密聚焦于透明的散装材料中时,非线性吸收会导致光学分解和微等离子体的形成,从而诱导材料的分子结构永久变化。在融合二氧化硅作为宿主材料的特定情况下,密度在局部增加,从而永久增加了折射率。这些变化的尺寸大致与焦点区域的大小相同。通过相对于光束横向移动样品,获得了连续的修改并创建波导(见图1a)。1b)。这样的指南几乎可以沿任意路径的任何安排编写,因为放置焦点的唯一限制因素是写作目标的焦距。在我们在随机光子波导结构上的工作中,我们制造了具有随机间距[5]和随机折射率[6]的波导的扩展晶格[6],从而产生了整个波函数的统计传播动力学(见图在将量子光发射到这些结构中并检查两粒子相关函数时,人们观察到,除了光子的预期玻体束外,发生了热化过程,因此光子位于结构中心(见图1C),显然正在从弹道运输到本地化的过渡。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
[1] A. White、G. Parks 和 CN Markides,“抽水蓄热电能的热力学分析”,《应用热能工程》,第 53 卷,第 291-298 页,2013 年 5 月。[2] JD McTigue、AJ White 和 CN Markides,“抽水蓄热电能的参数研究和优化”,《应用能源》,第 137 卷,第 800-811 页,2015 年 9 月。
在计算神经科学的许多领域中,神经元通常被分析为二元电化学开关(DeWeese 等人,2003 年;Victor,2006 年;Jensen 等人,2013 年;Mayfield,2013 年;Sterling and Laughlin,2015 年;Gupta and Bahmer,2019 年)。在这个抽象层次上,脉冲神经元可以被视为具有两个稳定位置的记忆系统。神经元可能正在发射,在这种情况下,其状态通常标记为 1,或者神经元可能正在静止,在这种情况下,其状态通常标记为 0。由于神经元发射动作电位的概率受到许多不同的未知因素的影响(例如神经元的温度、其发射阈值、其与突触前输入的连接程度等),因此,在香农的通信理论中,可以将发射状态和静止状态之间的区别作为二元随机变量进行研究。因此,通常隐含地假设单个动作电位的香农熵为
摘要 摘要 2020 Elsevier Ltd 世界人口不断增加,随之而来的化石燃料消耗也随之增加,因此有必要寻找新的能源;清洁、廉价和可再生的资源。氢气在各种方法中都被称为清洁和可再生燃料;因此,寻找清洁的氢气生产方式可以被视为应对气候变化和全球变暖的适当解决方案。在本研究中,提出了太阳能驱动的高温蒸汽电解器系统的概念设计,并使用实时模拟器内部代码对其性能进行了热力学研究。在两个不同的地点评估了入口参数对系统性能的影响,并在设计日计算了系统的实时性能。结果表明,所提出的系统能够分离进水中 98% 的现有氢气,并以 1.2 g/s 的速率生产纯氢,总能量和火用效率分别为 21.5% 和 22.5%。此外,据报道,主要的火用破坏器是太阳能集热器,其入口火用的能量损失为 36.4%。根据结果,推断出对热吸收最有效的参数是直接法向辐照度和入射角,而相对湿度没有主要影响。此外,设计的系统在设计日分别在斯特林和巴博尔·诺希尔瓦尼理工大学生产了 52.43 千克和 26.45 千克氢气。这些地点的年平均氢气产量分别估计为 4.98 吨和 3.93 吨。
