摘要:在演讲中,我将介绍近年来我们发表的三个不同的主题。首先,我将介绍有关栅极控制超导性的微观理论的工作[1]。最近,在许多实验中,已经报道了栅极介导的超导纳米旋转的超电流抑制。然而,到目前为止,对这些观察结果的微观理解仍在研究中。在我们的工作中,我们表明,桥表面的少量磁杂质可以显着有助于抑制超导性,因此在应用栅场时系统内部的超电流。这是因为栅场可以通过表面和超导体的磁杂质之间的交换相互作用来增强depairing。接下来,我将介绍基于基于超导体磁铁的杂种结构的Terahertz辐射检测的工作[2]:已知这些杂种结构在整个隧道交界处都表现出巨大的热电效应。基于这种巨大的热电效应,我们表明,对于在100至200 mk的温度下运行的现实检测器,能量分辨率可以低至1 MEV。这允许在1THz或以下的光子频率下进行宽带单光子分辨率。终于,我将介绍我们在带电子系统的浴室控制轨道磁性方面的工作[3]。系统浴缸的纠缠有望破坏相干的电子运动和淬火轨道磁性。物理。修订版b,108,184508/1-184508/8。[2] Subrata Chakraborty和Tero。J. Appl。在我们的工作中,我们表明,适当量身定制的浴室可以提高多播电子系统的轨道磁磁敏感性,甚至可以将轨道顺向磁反应转换为磁管磁性,因为系统浴耦合的增加。我们还展示了如何利用状态的van Hove奇异性来产生轨道磁化易感性的巨大增强。我们的工作为通过浴室工程参考控制带电子系统的轨道磁反应的可能性打开了大门:[1] Subrata Chakraborty,Danilo Nikoli´c,Juan Carlos Cuevas,Juan Carlos Cuevas,Francesco Giazotto,Angelo di Bernardo,Elio Mario Morsos cococo and Marios Cuoco)通过栅极控制的表面下降抑制超电流。T.Heikkilâa(2018)。 基于超导体 - 铁磁性连接的热电辐射检测器:量热度。 Phys。,124,123902/1–123902/7。 [3] Subrata Chakraborty和So Takei(2024)。 通过浴工程控制带电子系统的轨道磁性。 物理。 修订版 b,110,L140405/1 – L140405/5。 信,编辑的建议T.Heikkilâa(2018)。基于超导体 - 铁磁性连接的热电辐射检测器:量热度。Phys。,124,123902/1–123902/7。[3] Subrata Chakraborty和So Takei(2024)。通过浴工程控制带电子系统的轨道磁性。物理。修订版b,110,L140405/1 – L140405/5。信,编辑的建议
有一个显着的理论性旨在理解制造诱导的缺陷对单层石墨烯的操作行为的影响。这些研究主要集中在原子缺陷上,而在合成过程中,纳米级针孔和厚度附着在单层石墨烯上的两个层(双层)的斑块是不可避免的。在这项工作中,通过非平衡分子动力学模拟研究了这些纳米级缺陷对石墨烯热导率的影响。单层锯齿形和面向扶手椅的热导率的导热度是建模的,以捕获空隙和双层缺陷的影响。分析具有50 nm×10 nm尺寸的单层石墨烯片,其椭圆形缺陷为6 nm(主要轴)。我们的结果显示,随着温度的升高,导热率降低了20%以上,随着空隙尺寸的增加约75%。单层石墨烯的热导率的降低为15%,双层缺陷的直径为6 nm。这项研究表明,缺陷形状对石墨烯的导热性产生了巨大影响,与圆形相比,用椭圆形的缺陷表明石墨烯的热传递更高。这项工作提供了如何量化制造诱导缺陷对石墨烯导热率的影响的指南。
光聚合物衍生的碳的越来越流行,但可用特征尺寸的范围有限。这里的重点是扩展轨道到低表面与体积比(SVR)结构。描述了具有FTIR和DSC的高温丙烯酸光聚合前体的前体,并开发了用于在MM量表中以1.38×10 - 3μm-1的SVR生产构建的碳的热惰性总和处理。基于热重分析和质谱法,两种激活能量为≈79和169 kJ mol -1的热度制度被撤消,这在聚合物的形态转换过程中的机制是理论的,在300°和500°C之间的形态转换过程中。元素组成(440–600°C,O/C 0.25–0.087%)。洞察力导致对初始坡道(2°C min -1至350°C),等温固定(14 h),后保持坡道(0.5°C min -1-1至440°C)和最终坡道(10°C min -1至1至1000°C)进行优化的热处理。所得的碳结构在尺寸上是稳定的,无孔在μm的比例下,并包含特征大小的前所未有的变化(从mm到μm,比例)。发现应将构造碳推向工业相关的量表。
基于钻探(WBDF)由于其低成本和环境友好而被广泛使用。9,10然而,WBDF和页岩地层之间的长期相互作用会导致页岩水合和肿胀,从而导致井眼中可能发生的各种问题。页岩抑制剂可以抑制粘土矿物与WBDF的水的相互作用引起的水合。因此,高性能页岩抑制剂的发展至关重要。在页岩地层中使用了各种抑制剂来控制井眼的稳定性,例如氯化钾(KCL),胺,聚合物和纳米材料。kCl是主要的无机盐抑制剂。11然而,KCL的抑制作用受到限制。基于胺的页岩抑制剂的抑制能力比KCL更好,并且基于胺的页岩抑制剂已被广泛研究和应用。聚合物抑制剂的抑制作用主要是形成致密的LM。12纳米材料通过密封微孔,13和纳米二氧化硅(SIO 2)与胺化合物结合使用,从而减少了水分子与页岩表面的接触。14,15,但这些页岩抑制剂受到各种疾病的限制,包括较差的热度分辨率,有限的抑制能力,环境问题,复杂的准备过程和高成本。超支聚乙烯亚胺(HPEI)以其吸附,溶解度,多功能性和协同稳定性而闻名。16有
摘要:海藻酸盐是一种具有良好生物相容性的天然高分子,是可持续发展和替代石油衍生物的潜在高分子材料。但纯海藻酸盐溶液不具有可纺性,阻碍了海藻酸盐应用领域的拓展。随着静电纺丝技术的不断发展,人们开始采用合成高分子如PEO、PVA等作为共纺剂,增加海藻酸盐的可纺性。而且,利用多流体静电纺丝制备的同轴、平行Janus、三元等多样、新颖的静电纺丝纤维结构,为天然高分子可纺性差的问题找到了新的突破口。同时,多样的静电纺丝纤维结构有效地实现了药物的多种释放方式。海藻酸盐与静电纺丝的强强联合,被广泛应用于组织工程、再生工程、生物支架、药物输送等多个生物医学领域,研究热度持续高涨,尤其在药物的控制输送方面。本综述对海藻酸盐进行了简要概述,介绍了静电纺丝的新进展,并重点介绍了海藻酸盐基电纺纳米纤维在实现脉冲释放、持续释放、双相释放、响应性释放和靶向释放等各种控制释放模式的研究进展。
当您想用具有优质基因型的动物增强生产时,奶牛的饲养场将被广泛使用。饲养场系统(如堆肥谷仓或游离摊位)可能是由于床上用品的高湿度以及引起乳腺炎的微生物的存在而有害的。这些因素可能会损害奶牛的健康,然后损害产生的牛奶的质量和数量。这项研究的观察性是为了消除益生菌对饲料奶牛堆肥床中温度,相对热度,总细菌计数(TBC)和微生物培养的影响。这项研究是在巴西南部的四个奶牛场进行的。三个农场使用堆肥谷仓系统,一个农场使用了自由失速系统。在六个星期内注册了相对湿度数据,环境温度,床温度和床TBC。它被完全随机的设计,两种治疗方法(无益生菌)和四个通过治疗复制,随着时间的推移重复测量。益生菌在奶牛床上的应用不会改变TBC,温度或湿度,平均值分别为38,042 x 1,000 cfu/g,26.9ºC和61,2%。益生菌的使用减少了一些微生物的数量,例如大肠杆菌,青霉和s。dysgalatiae,并增加了阿尔塞氏菌的数量为克雷伯氏菌和trichoderma。
在本报告中,使用拉曼光谱和电热设备建模研究了氢(H)末期钻石场效应晶体管(FET)的热性能。首先,通过使用纳米粒子辅助的拉曼温度计测量传输线测量结构的温度上升来确定活性钻石通道的热导率(J Diamond)。使用这种方法,J钻石估计为1860 W/m k,95%的置信间隔范围从1610到2120 w/m k。与测量的电输出特性相结合,该J用作H-末端钻石Fet的电动机模型的输入参数。模拟的热响应与使用纳米粒子辅助的拉曼热度法获得的表面温度调查显示出良好的一致性。这些基于钻石的结构在从活跃的装置通道中耗散热量的设备热电阻低至1 mm k/w时会高度有效。使用校准的电热器件模型,钻石FET能够以40 W/mm的高功率密度运行,模拟温度升高为33K。最后,将这些钻石FET的热电阻与基于侧面晶体管结构的热电阻与基于侧面晶体管结构与基于其他Ultrawide Bandgap材料(Al 0.70 GA 0.70 GA的0.70 GA 30 N,B -GA -GA -GA -GA -GA -GA -b -ga 2 o 3)和宽3)和gan and and and by 3 and and and and thef。这些结果表明,基于钻石的横向晶体管的热电阻可能比基于GAN的设备低10,比其他UWBG设备低50。
关键词 飞机客舱,热舒适度,数值模拟,PMV(预测平均投票),PPD(预测不满意百分比) 1 引言 客机客舱是一个狭窄封闭的空间,通常乘客密度较高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了巨大努力(Pang et al. 2014)。有几种方法可以研究这些区域的热舒适度。在一些研究中,使用了著名的预测平均投票(PMV)模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学(CFD)来预测局部皮肤温度并计算热舒适度。Cui et al. (2014) 在飞机客舱内进行了现场测量,绘制了空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热度并不满意,因为他们感到很热。热舒适度图表现出不均匀性;中舱温度总是较高。然而,据报道,垂直温度梯度和空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。结论是,模拟飞机客舱的整体热感觉相对较好,但据报道,局部热不适感较高。Haghighat 等人(1999 年)在 43 次商业航班中进行了测量,持续时间超过一小时,期间持续监测温度、相对湿度和二氧化碳浓度。结果表明,平均气温为
对于超大的约瑟夫森连接,当量子效应变得重要时,已经预测了异常相变(DPT)[1]。这种过渡的物理起源是通过与耗散量子力学环境的相互作用来抑制该相的宏观量子隧穿。宏观量子隧道破坏了连接的超导性,而隧道的抑制会恢复超导性。因此,这种过渡通常称为超导体 - 绝缘体过渡(SIT)。sit是针对各种系统的,但是在单个约瑟夫森交界处的检测至关重要,因为它是预期这种过渡的最简单系统,而没有任何其他物理过程掩盖的风险,而在常规或随机的Josephson Junction阵列(如常规或随机的)系统中可能是可能的。在这封信中,我们介绍了我们对R = DV / DL与 /曲线的测量结果,对于各种单个小型隔离的Josephson连接,分流和未分离,具有不同的电容C和正常状态隧道阻力RT的值,我们已经检测到了两种类型的RL-Curves之间的跨界频率,这些RL-Curves具有与本质上的小型cortents syly Cortersents sybles conterents sybles conterents。根据此交叉,我们能够为约瑟夫森连接的整个相图映射[2]。观察到的相边界的位置与原始理论的预期不一致。但是,该理论要考虑到我们的电压测量值的有限准确性(即我们能够检测到的最小电压),很好地解释了观察到的相图。因此,任何DPT都是坐的,但反之亦然。我们的重要结论是,耗散相变(DPT)和超导体 - 绝缘体转变(SIT)的概念并不完全与以前相同。两者都伴随着热度的符号变化,传统上被认为是SIT的签名。我们认为,DPT的真实特征是我们实验中观察到的VI曲线的修改。我们的工作是在约瑟夫森相位临界的单一约瑟夫森(Josephson)中的量子效应的强烈证明和相位运动的带图。
1.Pregnant women and children under age 10 are prohibited to use.禁止孕妇和10岁以下儿童使用。 2.People with pulmonary dysfunction are prohibited to use.患有肺功能障碍的人禁止使用。 3.People with disorders of consciousness are prohibited to use.患有意识障碍的人禁止使用。 4.People with a body temperature of above 38°C are prohibited to use.体温超过38°C的人禁止使用。 5.People who use life sustaining artificial heart and lung machines and other health equipment are prohibited to use.使用生命维持型人工心肺机和其他健康设备的人禁止使用。 6.People who suffer from bleeding tendency and bleeding illness are advised to use it cautiously.(eg.Hysteromyoma, and Menstrual period etc.)患有出血倾向和出血疾病的人应慎重使用(例如子宫肌瘤、月经期等)。 7.People who are not sensitive to heat are suggested to be accompanied by family members.对于热度不敏感的人士,建议在家人陪同下使用。 8.People who implanted with cardiac pace maker, metallic artificial organs and embedded with metallic parts inside the body are prohibited to use.安装了心脏起搏器、金属人工器官或体内植入金属部件的人禁止使用。 9.People with severe heart disease are advised to use cautiously.心脏病严重患者使用时请谨慎。 10.During operation, please turn off the power switch of the machine immediately in case of emergency (such as power failure and fault etc.)在使用过程中,如遇到紧急情况(如停电、故障等),请立即关闭机器的电源开关。 11.If you feel physical abnormal or uncomfortable with the use of the machine on your body, please stop using it immediately.如果您在使用过程中感觉异常或不适,请立即停止使用。 12.Not recommended for children or people with difficulties of expression.不建议儿童或有表达困难的人使用。 13.Please do not touch the working parts of the machine with metallic objects.请勿用金属物品触摸机器的工作部件。 14.In case of smoke or peculiar smell during operation, please turn off power of machine immediately and contact the after-sales service personnel to solve the relevant problems.若在使用过程中出现烟雾或异常气味,请立即关闭机器电源,并联系售后服务人员 解决相关问题。 15.During operation, both feet should fully contact with energy board.Single point contact with energy board is strictly prohibited to avoid burns.在使用过程中,请确保双脚充分接触能量板。严禁单点接触能量板,以避免烫伤。