摘要:在演讲中,我将介绍近年来我们发表的三个不同的主题。首先,我将介绍有关栅极控制超导性的微观理论的工作[1]。最近,在许多实验中,已经报道了栅极介导的超导纳米旋转的超电流抑制。然而,到目前为止,对这些观察结果的微观理解仍在研究中。在我们的工作中,我们表明,桥表面的少量磁杂质可以显着有助于抑制超导性,因此在应用栅场时系统内部的超电流。这是因为栅场可以通过表面和超导体的磁杂质之间的交换相互作用来增强depairing。接下来,我将介绍基于基于超导体磁铁的杂种结构的Terahertz辐射检测的工作[2]:已知这些杂种结构在整个隧道交界处都表现出巨大的热电效应。基于这种巨大的热电效应,我们表明,对于在100至200 mk的温度下运行的现实检测器,能量分辨率可以低至1 MEV。这允许在1THz或以下的光子频率下进行宽带单光子分辨率。终于,我将介绍我们在带电子系统的浴室控制轨道磁性方面的工作[3]。系统浴缸的纠缠有望破坏相干的电子运动和淬火轨道磁性。物理。修订版b,108,184508/1-184508/8。[2] Subrata Chakraborty和Tero。J. Appl。在我们的工作中,我们表明,适当量身定制的浴室可以提高多播电子系统的轨道磁磁敏感性,甚至可以将轨道顺向磁反应转换为磁管磁性,因为系统浴耦合的增加。我们还展示了如何利用状态的van Hove奇异性来产生轨道磁化易感性的巨大增强。我们的工作为通过浴室工程参考控制带电子系统的轨道磁反应的可能性打开了大门:[1] Subrata Chakraborty,Danilo Nikoli´c,Juan Carlos Cuevas,Juan Carlos Cuevas,Francesco Giazotto,Angelo di Bernardo,Elio Mario Morsos cococo and Marios Cuoco)通过栅极控制的表面下降抑制超电流。T.Heikkilâa(2018)。 基于超导体 - 铁磁性连接的热电辐射检测器:量热度。 Phys。,124,123902/1–123902/7。 [3] Subrata Chakraborty和So Takei(2024)。 通过浴工程控制带电子系统的轨道磁性。 物理。 修订版 b,110,L140405/1 – L140405/5。 信,编辑的建议T.Heikkilâa(2018)。基于超导体 - 铁磁性连接的热电辐射检测器:量热度。Phys。,124,123902/1–123902/7。[3] Subrata Chakraborty和So Takei(2024)。通过浴工程控制带电子系统的轨道磁性。物理。修订版b,110,L140405/1 – L140405/5。信,编辑的建议
主要关键词