将灯外壳滑入仪器后面的插槽中,并将4mm的香蕉插头连接到12V AC或DC电源。插入蓝色过滤器。使用纳米安(NA)选择实验1并打开前面板开关,以便显示值将显示值。将罚款控制设置为大约“一半”位置。使用粗制控制,调整背部伏特,直到纳米安的读数非常接近零。然后使用良好的控件来达到零纳米压力。等待几秒钟以确保它完全为零。记下用于光源前面使用的颜色过滤器的背伏读数。重复测量以获得平均值。依次重复上面的每个颜色过滤器,并在每种情况下记下衬板。每次,重复一次或两次测量以获得平均电压。将“ x”轴的结果绘制为Hz x10 14中颜色的频率,而“ y”轴作为伏特中的后伏,然后绘制每个关系。在5分中绘制最佳拟合的直线图。Planck的常数('H')是该线(DV/DF)X电子(1.6x10 -19库罗姆斯)的斜率。理论上,“ H'= 6.626x10 -34
大型语言模型(LLMS)最近在各种任务中表现出了高功能,尤其是在开放式文本生成中,如Chatgpt(OpenAI,2023a)和其他模型所示(OpenAI,2023b; Touvron等>,2023a,b;江等。,2023)。在开放式一代中,LLMS必须以类似人类的风格产生正确的答案。多亏了缩放法(Kaplan等人。,2020年; Wei等人。,2022; Gunasekar等。,2023),这项和许多其他任务得到了显着改进。评估LLMS的开放式一代对于他们的发展而言是挑战的。最可靠的评估方法是人类的判断,例如在聊天机器人领域(Chiang等人,2024)。但是,开放式一代任务缺乏基本真理和清晰的评估客观标准。最近的llm-as-a-a-a-a判断基准(Zheng等人,2023),高端LLM取代了Human法官,部分解决了此问题,但有
开发具有窄槽的精确硒化铅 (PbSe) 光栅对于光谱、热成像和环境传感中使用的中红外 (MIR) 技术的发展至关重要。制造这些组件的主要障碍是,随着槽宽变小,蚀刻轮廓中的不规则性和反应离子蚀刻 (RIE) 延迟趋势会增加。本演讲指出,非导电光刻胶上电荷的积累是这些不规则性的主要来源。通过应用导电铜层,我们可以中和这种电荷,从而成功蚀刻轮廓显著增强且槽宽低至 0.7 μm 的光栅。这一突破不仅提高了 MIR 设备的灵敏度和分辨率,还为安全和医疗保健等领域的新应用铺平了道路。
摘要当两种材料彼此接触时,众所周知,电荷可以从一个表面转移到另一个表面。这种现象被称为扭转效应。开发了底压系列,以确定当两种材料相互接触时电荷转移的可能性。这项研究旨在研究靠近Minia市的碳酸钙含量在与Minia市附近的沉积岩石中的作用,并在与Kapton和Kapton和Polymethyl甲基丙烯酸酯(PMMA)接触时在岩石表面产生的电荷。选择了两种材料,因为Kapton靠近系列的底部,而PMMA靠近顶部。发现,岩石中较高的碳酸钙含量使其更有可能获得负电荷,从而降低了其在Triboelectric系列中的位置。某些碳酸钙含量低的岩石在其表面上有几个碳酸钙富含钙的岩石含量富含碳酸钙的口袋,从而在高接触力下接触的表面上有低电荷,这是因为易于破裂的碳酸钙袋,这些碳酸钙袋将碳酸钙颗粒沉积在另一表面上具有相反的电荷。关键字摩洛电效应,碳酸钙,岩石,落压电源系列。介绍了数千年的介绍,众所周知,如果两种材料接触,则有时可以充电,并且它们之间可能会发生电荷。在现代,这种现象被命名为摩洛电效应[1-3]。这种效应已用于从范德毛发发生器[4]到扭矩电性纳米生成器[5-10]的多个应用中。摩擦电效应的原因仍然未知,离子转移和电子转移可能是解释的,[11]。为了预测从任意两个表面的接触中产生的费用的数量和迹象,开发了Triboelectric系列[12-14],其中较高的A
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
专利的解决方案,用于二手电池的电量放电。这抵消了过热锂电池电池的危险,以及由于电池外壳机械分离期间自我释放而导致火灾的风险。进一步的研究是针对创建用于提炼蝙蝠溶剂并基于热解的细胞中其余有机物的过程。这允许将磁性电池组合(由钢制成)与主产品(即活性材料)旁边的铜和铝材材料分开。RWTH Aachen University的冶金和电效应研究所(IME)开发了
纳米技术不断提供具有独特特性的新型材料。在OD,1D和2D材料中对电效应和光学效应的受控综合和研究中有许多进步,后者受到了很多关注,这是自从原始对石墨烯的原始重点以来就没有消失的[1]。毫无疑问,至少某些新型材料可以为非线性光学现象(例如非线性吸收和非线性屈光度)的应用提供一个新的操场。的确,许多报告表明存在增强的非线性光学效应,但是对这种影响对实际应用的适用性的评估仍然不完整[2]。我将回顾一些有关我们小组中各种材料的NLO特性的有趣结果,包括对手性的非线性效应的研究
廉价清洁能源:自组织金属纳米结构实现安全廉价的能源存储......................................................................13 巨热释电效应将废热转化为电能......................................................................................14 能源存储革命:管传输启发的锂电池全固态电解质......................................................................................15 用于高能量密度电池的高性能聚合物基准固态电解质.............................................................................16 高性能、长寿命 Pd@Pt 核壳燃料电池催化剂.............................................................................17 先进的有机光伏(OPV)材料.............................................................................................18 钒液流电池的全面性能改进.............................................................................................19 消除金属卤化物钙钛矿薄膜中晶粒表面凹陷以改进太阳能电池............................................................................................................20