本研究设计并数值研究了一个新的热控制系统,用于用于航天器系统光学有效载荷的检测器。系统使用热电冷却器(TEC)作为维护冷手指在所需的设定点保持探测器温度的活性元件,使其在整个操作过程中保持在所需的范围内。该系统没有使用任何热管网络,而是使用附着在TEC热侧的辐射器将热负载耗散到环境空间环境中。使用有效属性的系统级建模用于对TEC的性能进行建模,而无需对任何内部复杂的几何形状进行建模。与温度相关的电流轮廓用作TEC的输入条件,因此TEC仅消耗所需的外部功率。研究了散热器的TEC设定点和几何参数的效果,并观察到,通过使用较大的设定点或具有较大尺寸的散热器,获得了功耗或提高性能系数的大幅度降低。该系统将进一步研究不同的热载荷和占空比(在100分钟的轨道周期内高达50%),以评估其在不同操作条件下的功效。还研究了该系统的连续操作周期,可以观察到,连续循环之间的循环误差最终将其变为零至零,因此表明在整个系统的整个生命中,都满足了连续的循环的温度控制要求。
摘要:光伏 (PV) 发电机是现代电网的重要组成部分。大多数 PV 系统利用各种最大功率点跟踪 (MPPT) 算法向公用设施注入最大可用功率。然而,在阳光明媚的日子里,持续获得最大功率会导致基于电力电子的 DC-DC 转换器的热应力增加和可靠性降低。本文提出了一种 DC-DC 转换器的热模型,该模型根据热传感器感测到的功率损耗和环境温度来评估累积温度。建议采用热控制策略将转换器主要组件的温度保持在允许的范围内。热控制包括两个阶段:初级阶段,调整 IGBT 开关的开关频率以降低累积温度;次级阶段,调整基于电流的 MPPT 算法以降低通过主开关的最大电流。这种方法旨在延长所用 DC-DC 转换器的使用寿命并降低其运营成本。此外,通过频率响应的稳定性分析确定开关频率变化的允许范围,使用闭环系统的波特图来评估频率响应的稳定性。所提出的热控制是在 MATLAB/Simulink 环境中实现的。相关结果证明了所提出的控制在将温度保持在可接受的范围内并从而提高系统可靠性方面的有效性。
开发一个个性化的热生理数字双胞胎,可用于预测热挑战性环境中乘员的健康和表现。第1部分将是基于广泛的气候和个人输入参数(包括年龄,健身和水合状态)的下一代热生理模型的开发。我们还将使用该模型来预测低成本,可持续解决方案的有效性,例如新型的热控制服(TCS),该套件(TCS)提议在不需要空调的无需空调的情况下维持体温。第2部分将涉及模型验证。人类生理学MSC学生项目将在盖伊校园的人类和应用生理科学中心的热室中进行,以评估对各种环境条件的热生理反应。博士生将使用这些数据对数字双胞胎进行必要的调整。项目描述
长期进化(LTE)射频电磁场(RF-EMF)广泛用于通信技术。因此,RF-EMF对生物系统的影响是一个主要的公众关注,其生理影响仍然存在争议。在我们先前的研究中,我们表明,各种人类细胞类型的连续暴露于1.7 GHz LTE RF-EMF以2 W/kg的特定吸收率(SAR)持续72小时可以诱导细胞鼻塞。为了了解LTE RF-EMF的精确细胞效应,我们详细阐述了先前研究中使用的1.7 GHz RF-EMF细胞暴露系统,它通过替换RF信号发生器并开发了基于软件的反馈系统来提高暴露功率稳定性。1.7 GHz LTE RF-EMF发电机的这种完善促进了RF-EMF暴露的自动调节,即使在72 h-h-fipsues期间,也将目标功率水平保持在3%的范围内和恒定温度。通过改进的实验设置,我们检查了在人脂肪组织衍生的干细胞(ASC),HUH7,HELA和大鼠B103细胞中连续暴露于1.7 GHz LTE RF- EMF的效果。令人惊讶的是,与未暴露的控制相比,所有细胞类型的增殖都没有显着变化。此外,在1.7 GHz LTE RF-EMF暴露的细胞中均未观察到DNA损伤和细胞周期扰动。但是,当关闭热控制系统并且在连续暴露于8 W/kg LTE RF-EMF的SAR期间,未控制RF-EMF诱导的随后温度升高时,细胞增殖在最大值时增加了35.2%。这些观察结果强烈表明,归因于1.7 GHz LTE RF-EMF暴露的细胞效应主要是由于诱导的热变化而不是RF-EMF的暴露本身。
2 Srisavangavadhana公主医学院,Chulabhorn Royal Academy,906 Kamphaeng Phet Phet 6 Rd。 太空探索已经成为科学家的焦点。 在所有行星中,火星是最接近我们星球的人,它具有发现生命迹象的痕迹。 地球具有关键的环境条件,是地球本身或太阳的关键环境条件。 如今,出于特定目的,有几个飞船发送到火星。 当前任务之一是样本收集任务,该任务收集了火星样品并将其发送回地球。 NASA发起了目前的这项任务的一名漫游者,其主要目的是在地球上收集样本至少为期两年。 样品检索着陆器将在大约六个月内进行操作,以收到流动站收集的样品并将其发送回地球。 每个航天器还基于其任务目标和时期需要不同种类的功率来源和热管理系统。 根据我们的观点研究和讨论了选择每个功率和热控制源的概述和考虑点。 关键字:火星样品收集任务,毅力任务,样本检索着陆器,热控制系统,太空探索。2 Srisavangavadhana公主医学院,Chulabhorn Royal Academy,906 Kamphaeng Phet Phet 6 Rd。太空探索已经成为科学家的焦点。在所有行星中,火星是最接近我们星球的人,它具有发现生命迹象的痕迹。地球具有关键的环境条件,是地球本身或太阳的关键环境条件。如今,出于特定目的,有几个飞船发送到火星。当前任务之一是样本收集任务,该任务收集了火星样品并将其发送回地球。NASA发起了目前的这项任务的一名漫游者,其主要目的是在地球上收集样本至少为期两年。样品检索着陆器将在大约六个月内进行操作,以收到流动站收集的样品并将其发送回地球。每个航天器还基于其任务目标和时期需要不同种类的功率来源和热管理系统。根据我们的观点研究和讨论了选择每个功率和热控制源的概述和考虑点。关键字:火星样品收集任务,毅力任务,样本检索着陆器,热控制系统,太空探索。
储能系统可解决当前供需间歇性问题,从而提高能源效率。在众多可用技术中,热化学储能前景十分广阔。在这项工作中,我们首次通过实验研究了感应加热作为将电力系统与热能技术直接耦合的方法。该系统还允许在快速多重吸附 - 解吸循环控制中进行多种测量。在定制装置中实现 CaCl 2 -NH 3 加合物的吸附和解吸循环。铁丝和废红泥被研究作为潜在的感应材料。使用差示扫描量热法、热重法、扫描电子显微镜和比表面积对材料在 1、2 和 1000 次循环后的性能进行评估。废红泥表现出良好的感应潜力。在所有情况下,1000 次循环后均未观察到材料降解。与使用铁丝加热的样品相比,使用废弃红泥加热的样品具有更高的最大吸收容量(0.304 对 0.154 g NH3 /g CaCl2 )和解吸焓(716 对 460 KJ/ kg CaCl2 )。这被发现与含有红泥的样品的平均比表面积有关,该比表面积几乎是铁样品的两倍。我们希望这里提出的概念可以促进感应加热方向的研究,同时为废弃红泥产生新的利用途径。
航天器热管理对于确保任务成功至关重要,因为它影响了板载系统的性能和寿命。提供了航天器热控制解决方案中最新技术的全面概述,以及用于高效有效热管理的设计方法框架。讨论了各种热控制溶液,包括涂料,绝缘,热管,相位变化材料,导电材料,热装置,积极泵送的流体环和辐射器,以及空间中的热量加载的主要来源。强调了对热环境的认证建模和分析,以确定适当的热控制解决方案和设计途径。未来的热管理创新(例如新材料和技术)有可能进一步提高航天器热控制解决方案的效率和有效性。
1. 简介 可靠的热控制子系统 (TCS) 是任何航天器的关键方面,但 TCS 的可靠性在实践中往往难以实现。TCS 的可靠性在设计阶段经常被高估,导致故障率高于客户愿意接受的水平。因此,航天器热控制界需要重新评估其公认的技术,本文旨在促进这一对话。本文回顾了航天器上使用的几种重要流体热控制技术的可靠性,包括泵送流体回路 (PFL)、回路热管 (LHP)、可变电导热管 (VCHP) 和轴向槽热管 (AGHP)。本综述更多地关注 PFL 和 LHP,因为这些更复杂、更强大的技术的使用有更多公开记录,并且这些系统的故障记录也更多。总结了所有已知的 PFL、LHP 和 VCHP 故障的开源示例,并显示了故障原因和一些解决方案。分析部分讨论了每种流体热控制子系统的故障率,以及更高的故障率与更复杂的设计有何关联。最后,提出了如何避免将来发生此类故障的建议。