摘要 本研究旨在探讨我国居住建筑节能标准的特点,以促进建筑师和建筑设计师更好地了解能源政策和相关标准,从而实现我国最优化的节能建筑设计。研究结果主要包括:(1)在热环境设计方面,将我国的气候区划分为五个区域;(2)新标准对居住建筑的日照、采光、通风环境等进行了规定;(3)对建筑设计要素,如布局、朝向、形状、色彩、平面布置、窗户类型等进行了规定,特别增加了夏热冬冷地区供暖系统的保温措施,这是旧标准中没有提到的;(4)我们承认,与国外许多国家的标准相比,我国标准仍然存在差距,我们仍期待我国标准在进一步提高建筑的保温性能和积极执行方面继续取得进展。
隐蔽通信或低检测/拦截概率 (LPD/LPI) 通信可以防止对手检测到传输。与标准方法(例如量子密钥分发 (QKD))提供的保护传输内容免遭未经授权的访问相比,这是一种更严格的安全要求。在这里,我们重点介绍图 1 所示的热噪声有损玻色子通道上的量子安全隐蔽通信。玻色子通道是光通道的量子力学描述,其参数为发射器 Alice 和预期接收器 Bob 之间的透射率 η,以及热环境注入的每种模式的平均光子数 ¯ n B,其中单个时空偏振模式是我们的基本传输单元。Alice 的目标是可靠地将数据传输给 Bob,即以任意小的解码错误概率。这必须隐蔽地完成:确保对手 Willie 可以构造的任何检测器都接近随机猜测。
摘要——可靠性预测方法通常不考虑电子产品的实际生命周期环境,包括其环境、操作和使用条件。考虑到热负荷,热管理策略仍然侧重于连续运行的设计,而连续运行的设计通常是基于最坏情况假设的积累而确定的。健康监测是一种评估产品在实际应用条件下可靠性的方法。本文以商用笔记本电脑为例,介绍了电子产品健康和使用监测的案例研究。在生命周期的所有阶段,包括使用、存储和运输,内部温度都在现场动态监测并进行统计分析。描述了电源循环、使用历史、CPU 计算资源使用情况和外部热环境对峰值瞬态热负荷的影响。此类监测的生命周期温度数据可应用于寿命消耗监测方法,以提供因受温度影响的特定故障机制而导致的损坏估计和剩余寿命预测。这些发现有助于设计更可持续、能耗最低的热管理解决方案。
与相互作用强度相比,当疾病较大时,相互作用颗粒的量子系统表现出局部行为。在没有或有限的误差校正的量子计算机上研究这种现象是具有挑战性的,因为即使是弱耦合到热环境也会破坏大多数定位签名。幸运的是,已知本地运算符的光谱函数包含可以在噪声存在下生存的特征。在这些光谱中,与热相相比,在低频率下的离散峰和软间隙表示定位。在这里,我们介绍了在一个维离子量子计算机上的光谱函数的计算,以用于具有无序的一维的海森堡模型。此外,我们设计了一种误差技术,该技术有效地从测量中消除噪声,从而使定位的明确特征随着疾病的增加而出现。因此,我们表明光谱函数可以作为当前和未来一代量子计算机上多体定位的可靠且可扩展的诊断。
工程)(ABES技术研究所)(ABES技术研究所)(ABES技术研究所)摘要:电子电动机的关键要素,可确保汽车电动机的有效操作和耐用性是热管理机器。可以为机器充电以维护电池,电力电子设备和电动机的理想工作温度范围。由精心设计的热管理设备创建了一个强大的热环境,该设备可以提高常规汽车的效率,延长电池寿命并增加车辆的品种。本文将总结各种热控制设备添加剂,其目的以及为数字电机创建有效的热管理系统的困难。本文还将介绍创建热控制设备以及行业未来过程的最新发展。关键字:电池热管理,电子车辆,ESP32。r eceived 2023年5月8日; r于2023年5月17日; 2023年5月19日的ceccept©作者2023。在www.questjournals.org
当目标物体嵌入在嘈杂的环境中时,使用弱光源感知目标物体的存在是一项艰巨的任务。一种可能性是使用量子照明来完成此任务,因为它在确定物体存在和范围方面的表现优于传统照明。即使传统照明和量子照明都限制在基于非同时、相位不敏感的巧合计数的相同次优物体检测测量中,这种优势仍然存在。受现实实验协议的启发,我们提出了一个使用简单探测器分析巧合多发数据的理论框架。这种方法允许包括经常被忽视的非巧合数据,并提供无需校准的阈值来推断物体的存在和范围,从而实现不同检测方案之间的公平比较。我们的结果量化了在嘈杂的热环境中进行目标识别时量子照明相对于传统照明的优势,包括估计以给定置信度检测目标所需的拍摄次数。
<3.4 kg,包括76.2厘米的飞行铅安全带台阶尺寸0.0625摄氏度调整速率1.0度/s输出扭矩 @ 1.0度/s 11英寸11英寸lb典型在77°F 1.2 nm惯性载荷> 86,452.6 lb-in 2> 25.3 kg-2> 25.3 kg-m 2> 25.3 kg-m 2 360 deg> 0.0 deg> 0.0 0.6 in lbm> 0.6 in lbm> 0.6 in lm> 0.0 nm nm nm nm> 0.0 nm nM电阻52.5Ω(标称,2相)滑动环功率转移44个转移 @ 5.0 AMPS最大滑动环信号传输26转移 @ 2.5安培最大电压28 VDC电压28 VDC电位计的电阻10kΩ合格的热环境温度,运行-31°F至160°F -355°C至71°C温度,2.112 -80°C至96°C注意:此数据仅用于信息,并且可能会更改。联系Sierra空间以获取设计数据。
热中风(HS)代表了一种生命延伸的疾病,这是由于暴露于热环境或剧烈运动的原因,这是由于热产生和耗散之间的不平衡。HS是一种医疗状况,由于温度的稳定升高,全世界的患病率正在增加,并且在脆弱人群中记录了大量死亡率。在2024年,极端热浪导致全球HS和相关死亡的病例增加,尤其是在巴基斯坦卡拉奇。本文回顾了HS管理的病理生理学,效果,治疗和预防策略。有效的管理包括迅速的现场冷却和有症状治疗,然后对严重病例进行重症监护。使与热有关的疾病保持较低,室内住宿,水合和公众意识运动起着重要作用。因此,本文的冲动是,HS要求全球竞技场非常重视,其主动措施应执行以避免在全球范围内避免这种医疗紧急情况。
13.摘要(最多 200 个字)本报告描述了 AEDC 连续流高超声速风洞中用于静态稳定性、压力、传热、材料/结构、边界层过渡和电磁波测试的程序。由于定义高超声速飞行器的热环境非常重要,因此特别强调传热技术。概述了高超声速飞行器部件开发中使用的材料/结构测试方法。不幸的是,预测过渡的方法已经困扰了空气动力学家三十多年,并且仍有许多未解问题。本报告简要介绍了影响过渡的许多参数,并为有兴趣专门研究此主题的人提供了大量参考资料。讨论了使用三重球的方法,并提供了说明性数据。电磁波测试是一种相对较新的测试技术,它涉及多个学科的结合:气动热力学、电磁学、材料/结构和高级诊断。这项新技术的本质是处理电磁波(RF 或 IR)在通过以高超音速飞行的导弹的弓激波、流场和电磁(EM)窗口时的传输和可能的失真。14.主题术语 电磁波、导弹导引头系统、高超音速飞行器、边界层、瞄准线误差、机鼻雷达罩
我们展示了在数字量子计算机上对量子场论非平衡动力学的模拟。作为一个代表性的例子,我们考虑 Schwinger 模型,这是一个 1+1 维 U(1) 规范理论,通过 Yukawa 型相互作用耦合到标量场理论描述的热环境。我们使用在空间晶格上离散化的 Schwinger 模型的哈密顿量公式。通过追踪热标量场,Schwinger 模型可以被视为一个开放的量子系统,其实时动力学由马尔可夫极限中的 Lindblad 方程控制。与环境的相互作用最终使系统达到热平衡。在量子布朗运动极限中,Lindblad 方程与场论 Caldeira-Leggett 方程相关。通过使用 Stinespring 膨胀定理和辅助量子比特,我们使用 IBM 的模拟器和量子设备研究了 Schwinger 模型中的非平衡动力学和热态准备。作为开放量子系统的场论的实时动力学和此处研究的热态准备与核物理和粒子物理、量子信息和宇宙学中的各种应用相关。